1. Derive identities for $\sin 3\theta$ and $\cos 3\theta$ by calculating $e^{3i\theta} = (e^{i\theta})^3$.

2. Show that if z and w are complex numbers then $|zw| = |z||w|$.

3. If $z = a + ib$ and $w = c + id$ are complex numbers with a, b, c, d real, derive a formula for the real and imaginary parts of $\frac{z}{w}$.

4. Let $g(x)$ be a real valued function defined everywhere on the real line. Suppose that there are only ten points x_1, x_2, \ldots, x_{10} at which g vanishes. That is, $g(x) = 0$ if and only if x is one of x_1, \ldots, x_{10} Let $G(x)$ be an antiderivative for g. That is, suppose

$$G'(x) = g(x),$$

at every x. What is the largest number of possible real values x where $G(x)$ vanishes.

5. Let

$$f(x) = \sum_{j=1}^{\infty} a_j x^j,$$

be a power series and let R be its radius of convergence. Let $R' < R$. Show that for every $\epsilon > 0$ there is $N(\epsilon)$ so that

$$|f(x) - \sum_{j=1}^{N} a_j x^j| < \epsilon,$$

for every x with $|x| < R'$.

6. Let n be a natural numbers. Show using the definition of integrability that $f(x) = x^n$ is integrable on any interval $[a, b]$ and that

$$\int_{a}^{b} f(x) dx = \frac{1}{n+1} (b^{n+1} - a^{n+1}).$$

Hint: The point of this problem is to practice using the definition of the integral.

7. Let f and g be integrable functions on $[a, b]$ show that $f + g$ is integrable on $[a, b]$.

8. Let f be an bounded function on $[a, b]$. Let K be the difference between the upper integral of f on $[a, b]$ and the lower integral of f on $[a, b]$. (Note that f being integrable on $[a, b]$ means $K = 0$.) Show that for any $\epsilon > 0$ there is a partition P of $[a, b]$ so that

$$U(f, P) - L(f, P) < K + \epsilon.$$