Let R be a ring with identity $1 \neq 0$, and M a left R-module.

1) a) The endomorphism ring of R-module homomorphisms $f : M \to M$ is defined as $\text{End}_R(M)$. The opposite ring R^{op} of $(R, \cdot, +)$ is defined as $(R, \cdot^{\text{op}}, +)$, where $a \cdot^{\text{op}} b = b \cdot a$. Show that there is an isomorphism of rings $\text{End}_R(R^{\oplus n}) \cong \text{Mat}_n(R^{\text{op}})$.

b) Show that the center of the ring $\text{Mat}_n(R)$ is isomorphic to the center of the ring R.

2) Let R be a left Artinian ring, and $J(R)$ be its Jacobson radical, the intersection of all maximal left ideals of R.

a) Show that $J(R)$ is nilpotent (i.e. $J(R)^n = 0$ for some integer $n \geq 1$).

(Hint: $J(R)^r$ form a descending chain. Consider the ideal $J(R)^\infty = \bigcap_{r=1}^{\infty} J(R)^r$. Show that it is zero by applying Nakayama’s lemma on a minimal non-zero finitely generated submodule L of $J(R)^\infty$ and show a contradiction.)

b) Prove the generalization of Nakayama’s lemma for non-commutative rings: If M is a left R-module and $J(R)M = M$, then $M = 0$.

c) For a left Artinian ring R, show that the following are equivalent:

i) M is left Artinian,

ii) M is left Noetherian,

iii) M is finitely generated.

d) Show that R is a left Artinian ring \Rightarrow R is a left Noetherian ring, and that any finitely generated R-module admits a Jordan-Hölder filtration (i.e. of finite length).