1. Problem 2.1.5

(a)

(b)
2. Problem 2.1.10

(a) Since \(f(x, y) \geq 1 \) for all \(x, y \in \mathbb{R}^2 \), we will have non-empty level curves only when \(c \geq 1 \). These are of the form \(x^2 + y^2 + 1 = c \), or \(x^2 + y^2 = c - 1 \). Thus level curves are circles centered around the origin, with radius \(\sqrt{c-1} \). Increasing \(c \) will increase the radius.

(b) Similar to part (a). Since \(f(x, y) \leq 1 \) for all \(x, y \in \mathbb{R}^2 \), only values of \(c \) where \(c \leq 1 \) produce non-empty level curves. These have form \(x^2 + y^2 = 1 - c \), circles around the origin with radius \(\sqrt{1-c} \). Decreasing \(c \) will increase the radius.

(c) For a fixed \(c \), the level curve \(f(x, y) = x^3 - x = c \) will consist of a union of vertical lines \(x = x_i \), \(1 \leq i \leq k \), where \(k \) is the number of roots of the polynomial \(x^3 - x - c \), where \(x_i \) are the roots. We can obtain a visual representation of the situation by flipping the graph of \(g(x) = x^3 - x \):

We can work out the local maximum and minimum of \(x^3 - x \); they have values \(2\sqrt{3}/9 \) and \(-2\sqrt{3}/9 \), respectively. Thus when \(c \in (-2\sqrt{3}/9, 2\sqrt{3}/9) \), we will have three roots for \(x^3 - x - c = 0 \), and so our level curve will consist of three vertical lines. For \(c \) on the boundaries of this interval, we will have two roots, and outside this interval only one. Outside this interval, increasing \(c \) shifts our vertical line to the right.
2 Problem 2.1.10

(a) $f(x, y) = x^2 + y^2 + 1$
(b) $f(x, y) = 1 - x^2 - y^2$
(c) $f(x, y) = x^3 - x$
3 Problem 2.1.27

$4x^2 + y^2 = 16$
4 Problem 2.2.4

(a) Polynomial and exponential functions are continuous so limit exists at all points for them. Their composition is also continuous. Therefore \(\lim_{(x,y)\to(0,1)} e^x = e^0 = 1\) (composition of exponential and polynomial) and \(\lim_{(x,y)\to(0,1)} y = 1\). Using Theorem 3(iii) from the book we know that

\[\lim_{(x,y)\to(0,1)} e^x y = \lim_{(x,y)\to(0,1)} e^x \lim_{(x,y)\to(0,1)} y = 1. \]

(b) The conditions for L’Hospital’s rule are satisfied and thus

\[\lim_{x\to0} \frac{\sin^2 x}{x} = \lim_{x\to0} 2 \sin x \cos x = 0. \]

(c)\(\lim_{x\to0} \frac{(\sin x)^2}{x} = \lim_{x\to0} \frac{\sin x}{x} \lim_{x\to0} \frac{\sin x}{x} = 1.\)

Using the fact that \(\lim_{x\to0} \frac{\sin x}{x} = 1\) and Theorem 3(iii).

5 Problem 2.2.12

(a) The conditions for L’Hospital’s rule are satisfied and thus the limit exists. Using L’Hospital’s rule a number of times, we get

\[\lim_{x\to0} \frac{\sin 2x - 2x^3}{x^3 + y} = \lim_{x\to0} \frac{2 \cos 2x - 2}{3x^2} = \lim_{x\to0} \frac{-4 \sin 2x}{6x} = \lim_{x\to0} \frac{-8 \cos 2x}{6} = -\frac{4}{3}. \]

(b) We will take limits along two directions first with \(x = 0\) and then with \(y = 0\). Along \(x = 0\) we get \(\lim_{(x,y)\to(0,0)} \frac{\sin 2x - 2x^3 + y}{x^3 + y} = \lim_{y\to0} \frac{y}{y} = 1\). Along \(y = 0\) we get \(\lim_{(x,y)\to(0,0)} \frac{\sin 2x - 2x^3 + y}{x^3 + y} = \lim_{x\to0} \frac{\sin 2x - 2x^3}{x^3} = -\frac{4}{3}\) by part (a). If the limit existed, along both these directions it should have been same. So the limit does not exist.

(c)By example 15(b), we know \(\lim_{(x,y)\to(0,0)} \frac{2x^2 y \cos z}{x^2 + y^2} = 0.\) And we know \(\lim_{z\to0} \cos z = 1.\) So \(\lim_{(x,y,z)\to(0,0,0)} \frac{2x^2 y \cos z}{x^2 + y^2} = \lim_{(x,y)\to(0,0,0)} \frac{2x^2 y}{x^2 + y^2} \lim_{(x,y,z)\to(0,0,0)} \cos z = 0\) by Theorem 3(iii).