In the sequel, V denotes a vector space defined over the field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} unless otherwise specified.

Problem 1. Read from the textbook: Chapter 2, Section 5-6.

Problem 2 (20pts). From the textbook. Ch. 2, Problem 4.1.

Problem 3 (20pts). From the textbook. Ch. 2, Problem 5.5.

Problem 4 (20pts). From the textbook. Ch. 2, Problem 5.6.

Problem 5 (20pts). Consider in the space \mathbb{R}^3 vectors $v_1 = (1, -1, 4)^T$, $v_2 = (3, 2, 1)^T$, $v_3 = (1, 4, -7)^T$, $v_4 = (-2, 3, 5)^T$.

a) Prove that this system of vectors is generating.
b) Extract a basis from this system.

Problem 6 (20pts). Let V be a finite dimensional vector space. Let $U \subset V$ be a subspace. Show that if $\dim U = \dim V$, then $U = V$.