1. (7 pts)[Apostol IV.8.12, 13, 14]
(12.) Let A be an $n \times n$ matrix with characteristic polynomial $f(\lambda)$. Prove (by induction) that the coefficient of λ^{n-1} in $f(\lambda)$ is $-\text{tr } A$.

Proof. Let A be $(a_{ij})_{n \times n}$, we will prove the statement by induction on n.

When $n = 1$, $f(\lambda) = \lambda - a_{11}$ and $\text{tr}(A) = a_{11}$. The statement is true.

Now we assume that when $k = n - 1$ ($n \geq 2$) the statement is true, then we consider the case when $k = n$. Notice that

$$f(\lambda) = \det(\lambda I - A).$$

We denote $M = \lambda I - A$, then the bottom row of M is $(-a_{n,1}, \cdots, -a_{n,n-1}, \lambda - a_{n,n})$.

We use the Theorem 3.9 in the textbook, we have that

$$\det M = (-1)^n a_{n,1} \det(M_{n,1}) - \cdots + a_{n,n-1} \det(M_{n,n-1}) - (a_{n,n} - \lambda) \det(M_{n,n}).$$

Since the only entries of M that contain λ are in the diagonal, so $\det(M_{n,i})$ ($1 \leq i \leq n-1$) is at most a degree $(n-2)$ polynomial on λ as $M_{n,i}$ won’t contain $\lambda - a_{n,n}$. Then $\det(M_{n,i})$ ($1 \leq i \leq n-1$) will contribute nothing in the coefficient of λ^{n-1}.

Observe that $M_{n,n} = \lambda - (a_{ij})_{(n-1)\times(n-1)}$, so we can use our assumption on the characteristic polynomial of $(a_{ij})_{(n-1)\times(n-1)}$. Then we get that the coefficient of λ^{n-2} in $\det M_{n,n}$ is $-\sum_{i=1}^{n-1} a_{ii}$. We also know that characteristic polynomial is monic, so $\det M_{n,n} = \lambda^{n-1} - \sum_{i=1}^{n-1} a_{ii} \lambda^{n-2} +$ some lower terms. We plug in the equation of $\det M$ above, we get that the coefficient of λ^{n-1} in $\det M$ is

$$-\sum_{i=1}^{n-1} a_{ii} - a_{nn} = -\text{tr } A,$$

which completes the induction. \(\square\)

(13.) Let A be B be $n \times n$ matrices with $\det A = \det B$ and $\text{tr } A = \text{tr } B$. Prove that A and B have the same characteristic polynomial if $n = 2$ but that this need not be the case if $n > 2$.

Proof. Let X be any matrix, we denote $f_X(\lambda)$ the characteristic polynomial of X. Then we know that f_X is monic, the coefficient of λ^{n-1} is $-\text{tr } X$ by the previous problem and the constant term in f_X is $(-1)^n \det(X)$.

When $n = 2$, then $f_A = \lambda^2 - \text{tr}(A)\lambda + \det(A)$ and $f_B = \lambda^2 - \text{tr}(B)\lambda + \det(B)$.

Since $\det A = \det B$ and $\text{tr}(A) = \text{tr}(B)$, so $f_A(\lambda) = f_B(\lambda)$. In other words, A and B have the same characteristic polynomials.

When $n > 2$, Let $A = \text{diag}(2,0,\cdots,0)$ be an $n \times n$ matrix and $B = \text{diag}(1,1,0,\cdots,0)$ be an $n \times n$ matrix. Since $n > 2$, both matrices have determinants 0 and traces 2. But $f_A(\lambda) = (\lambda - 2)\lambda^{n-1}$ is different from $f_B(\lambda) = (\lambda - 1)^2 \lambda^{n-2}$. Hence the statement is false when $n > 2$. \(\square\)

(14.) Prove each of the following statements about the trace.

Date: February 29, 2016.
(a) \(\text{tr} (A + B) = \text{tr} A + \text{tr} B \).
(b) \(\text{tr} (cA) = c \text{tr} A \).
(c) \(\text{tr} (AB) = \text{tr} (BA) \).
(d) \(\text{tr} A^t = \text{tr} A \).

\textbf{Proof.} Denote \(A = (a_{ij})_{n \times n} \) and \(B = (b_{ij})_{n \times n} \).

(a) By definition, \(\text{tr}(A) = \sum a_{ii} \), \(\text{tr}(B) = \sum b_{ii} \) and \(\text{tr}(A + B) = \sum (a_{ii} + b_{ii}) \), so we have
\[
\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B).
\]

(b) Matrix \(cA = (ca_{ij})_{n \times n} \), then we have
\[
\text{tr}(cA) = \sum (c \cdot a_{ii}) = c \sum a_{ii} = c \text{tr}(A).
\]

(c) Denote \(AB = (c_{ij})_{n \times n} \) and \(BA = (d_{ij})_{n \times n} \). Then we have
\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},
d_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj}.
\]
So we can compute the traces:
\[
\text{tr}(AB) = \sum_{i,j=1}^{n} c_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki},
\]
\[
\text{tr}(BA) = \sum_{i,j=1}^{n} d_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki}.
\]
We switch \(i \) and \(k \) in the equation of \(\text{tr}(AB) \), then get
\[
\text{tr}(AB) = \sum_{i,k=1}^{n} a_{ki} b_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ik} a_{ki}.
\]
Next, we change the order of the summation in the above equation and get
\[
\text{tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki} = \text{tr}(BA).
\]

\textbf{Remark.} Actually, \(AB \) and \(BA \) have the same characteristic polynomials. When \(A \) is invertible, \(AB \) and \(BA \) are similar matrices so they have the same characteristic polynomials. When \(A \) is not invertible, the characteristic polynomials are still the same by the continuity.

(d) Notice that the \((i,j)\)-th entry of \(A^t \) is \(a_{ji} \), so
\[
\text{tr}(A^t) = \sum a_{ji} = \text{tr}(A).
\]

\(\square \)

2. (6 pts)[Apostol I.13.11] In the linear space of all real polynomials, define
\[
(f, g) = \int_{0}^{\infty} e^{-t} f(t) g(t) \, dt.
\]
(a) Prove that this improper integral converges absolutely for all polynomials \(f \) and \(g \).
(b) If \(x_n(t) = t^n \) for \(n = 0, 1, 2, \ldots \), prove that \(\langle x_n, x_m \rangle = (m + n)! \).

(c) Compute \(\langle f, g \rangle \) when \(f(t) = (t + 1)^2 \) and \(g(t) = t^2 + 1 \).

(d) Find all linear polynomials \(g(t) = a + bt \) orthogonal to \(f(t) = 1 + t \).

Also, compute an orthonormal basis for the subspace consisting of polynomials of degree at most 3.

Proof. (a) Since \(f(t)g(t) \) is a polynomial, we can find \(N \) such that if \(t \geq N \) we have \(|f(t)g(t)| \leq e^\frac{t}{2} \). Then

\[
\int_0^\infty |e^{-t}f(t)g(t)|dt \leq \int_0^N |e^{-t}f(t)g(t)|dt + \int_N^\infty |e^{-t}e^\frac{t}{2}|dt < \infty.
\]

(b) We argue by induction. We have \(\langle x_0, x_0 \rangle = \int_0^\infty e^{-t}dt = 1 = 0! \). Assume \(\langle x_m, x_n \rangle = (m + n)! \). Then integrating by parts we have

\[
\langle x_m, x_{n+1} \rangle = \int_0^\infty e^{-t}t^{m+n+1}dt
= \int_0^\infty \left(\frac{d}{dt} (-e^{-t}) \right) t^{m+n+1}dt
= \left[-e^{-t}t^{n+m+1} \right]_0^\infty - \int_0^\infty -e^{-t} \left(\frac{d}{dt} t^{n+m+1} \right) dt
= (n + m + 1) \int_0^\infty e^{-t}t^{n+m}dt
= (n + m + 1) \langle x_n, x_m \rangle
= (n + m + 1)(n + m)!
= (n + m + 1)!.
\]

(c) By linearity and (b) we have

\[
\langle (t + 1)^2, t^2 + 1 \rangle = \langle t^2 + 2t + 1, t^2 + 1 \rangle
= \langle t^2, t^2 \rangle + 2 \langle t, t^2 \rangle + 2 \langle t, 1 \rangle + \langle 1, t^2 \rangle + \langle 1, 1 \rangle
= 4! + 2! + 2 \cdot 3! + 2 \cdot 1! + 2! + 0!
= 43.
\]

(d) Consider the set \(\{1 + t, 1\} \) which spans the space of linear polynomials. We apply Gram-Schmidt to get an orthogonal basis \(\{v_1, v_2\} \) for the same space, by
letting \(v_1 = 1 + t \) and
\[
v_2 = 1 - \frac{(1, 1 + t)}{(1 + t, 1 + t)}(1 + t)
\]
\[
= 1 - \frac{(1, 1) + (1, t)}{(1, 1) + 2(1, t) + \langle t, t \rangle(1 + t)}(1 + t)
\]
\[
= 1 - \frac{0! + 1!}{0! + 2! - 1! + 2!}(1 + t)
\]
\[
= 1 - \frac{2}{5}(1 + t)
\]
\[
= \frac{1}{5}(3 - 2t).
\]

Since the space of linear polynomials is two dimensional, the orthogonal complement of \(1 + t \) is one-dimensional. Therefore every linear polynomial orthogonal to \(1 + t \) is of the form \(c(3 - 2t) \) for some \(c \in \mathbb{R} \).

An orthonormal basis for the subspace consisting of polynomials of degree at most 3 is
\[
\left\{ 1, t - 1, \frac{1}{2} t^2 - 2t + 3, \frac{1}{6} t^3 - \frac{3}{2} t^2 + 2t - 1 \right\}.
\]

3. (5 pts) Let \(V \) be a vector space with an inner product \((,\). Let \(\{v_1, v_2, \ldots, v_n\} \) be a generating set of \(V \). Prove
(a) if \((x, v) = 0 \) for all \(v \in V \), then \(x = 0 \).
(b) if \((x, v_i) = 0 \) for all \(i = 1, \ldots, n \), then \(x = 0 \).
(c) if \((x, v_i) = (y, v_i) \) for all \(i = 1, \ldots, n \), then \(x = y \).

Proof. (i) If \(x \neq 0 \), then by the axiom of the inner product, \((x, x) > 0 \).
(ii) Let \(v \in V \). Then \(v = \sum_{i=1}^{n} a_i v_i \) for some \(a_i \in \mathbb{R} \). Then
\[
(x, v) = (x, \sum_{i=1}^{n} a_i v_i) = \sum_{i=1}^{n} (x, a_i v_i) = \sum_{i=1}^{n} a_i (x, v_i) = 0
\]
By part (i), \(x = 0 \).
(iii) The assumption implies that \((x - y, v_i) = 0 \) for all \(i \). By part (ii), \(x - y = 0 \).
\(x = y \). □

4. (7 pts) Let \(V = \mathbb{R}^4 \) and \(U = L(v_1, v_2) \) be the subspace of \(V \) generated by the vectors \(v_1 = (1, 3, 1, 1) \) and \(v_2 = (3, 2, 2, 1) \).
(a) Find an orthogonal basis of \(U \).

Solution. Since the generating set for \(U \) is linearly independent, we can use the Gram–Schmidt process to get an orthogonal basis. We set
\[
w_1 = (1, 3, 1, 1).
\]
Then we produce an element in \(U \) orthogonal to \(w_1 \) by taking
\[
w_2 = (3, 2, 2, 1) - \text{proj}_{w_1}(3, 2, 2, 1)
\]
\[
= (3, 2, 2, 1) - (1, 3, 1, 1)
\]
\[
= (2, -1, 1, 0),
\]
where we used the calculation that
\[
\text{proj}_{w_1}(3, 2, 2, 1) = \frac{\langle w_1, (3, 2, 2, 1) \rangle}{\langle w_1, w_1 \rangle} w_1 \\
= \frac{3 + 6 + 2 + 1}{12} w_1 \\
= w_1.
\]
Thus, \(\{w_1, w_2\}\) is an orthogonal basis for \(U\). \(\Box\)

(b) Find the orthogonal projection of \(v = (1, 1, 1)^T\) onto \(U\).

\textit{Solution.} Since \(\{w_1, w_2\}\) is an orthogonal basis for \(U\), we have
\[
\text{proj}_U(v) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2.
\]
We calculate
\[
\text{proj}_U(1, 1, 1, 1) = \frac{\langle (1, 1, 1, 1), (1, 3, 1, 1) \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle (1, 1, 1, 1), (2, -1, 1, 0) \rangle}{\langle w_2, w_2 \rangle} w_2 \\
= \frac{1 + 3 + 1 + 1}{12} w_1 + \frac{2 - 1 + 1}{6} w_2 \\
= \frac{1}{2} (1, 3, 1, 1) + \frac{1}{3} (2, -1, 1, 0) \\
= \frac{3}{6} (1, 3, 1, 1) + \frac{2}{6} (2, -1, 1, 0) \\
= (7/6, 7/6, 5/6, 3/6).
\]
\(\Box\)

(c) Find the distance of \(v = (1, 1, 0, 0)^T\) from \(U\).

\textit{Solution.} This is just finding \(\|v - \text{proj}_U(v)\|\). We compute
\[
\text{proj}_U(1, 1, 0, 0) = \frac{\langle (1, 1, 0, 0), (1, 3, 1, 1) \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle (1, 1, 0, 0), (2, -1, 1, 0) \rangle}{\langle w_2, w_2 \rangle} w_2 \\
= \frac{2}{6} (1, 3, 1, 1) + \frac{1}{6} (2, -1, 1, 0) \\
= (4/6, 5/6, 3/6, 2/6).
\]
Therefore,
\[
\|\text{proj}_U(1, 1, 0, 0) - (1, 1, 0, 0)\| = \| (4/6, 5/6, 3/6, 2/6) - (1, 1, 0, 0) \|
= \|(2/6, -1/6, 3/6, 2/6)\|
= (4/36 + 1/36 + 9/36 + 4/36)^{1/2}
= (18/36)^{1/2}
= 1/\sqrt{2}.
\] \(\Box\)