Ma/CS 6a

Class 3: The RSA Algorithm

By Adam Sheffer

Putnam Competition

• The 2015 Putnam Competition will take place, Saturday, December 5, 2015. Sign-up sheets have been posted in all of the Sloan classrooms.

• The last day to sign-up is Wednesday 10/07/15 at noon.

• Ma 17 is our official review course for the Putnam. T 7:30 –9:30 159 Sloan.

• For more information, see http://math.scu.edu/putnam/
Reminder: Public Key Cryptography

- **Idea.** Use a public key which is used for encryption and a private key used for decryption.
- Alice encrypts her message with Bob’s public key and sends it.

![Alice encrypts message with Bob's public key](image)

Reminder 2: Congruences

- If \(r = a \mod m \) and \(r = b \mod m \), we say that “\(a \) is congruent to \(b \) modulo \(m \)”, and write
 \[
 a \equiv b \mod m.
 \]
 - Equivalently, \(m|(a - b) \).
- The numbers 3, 10, 17, 73, 1053 are all congruent modulo 7.
Reminder 3: Some Properties

- **Addition.** If \(a \equiv b \mod m \) and \(c \equiv d \mod m \), then \(a + c \equiv b + d \mod m \).

- **Products.** If \(a \equiv b \mod m \) and \(c \equiv d \mod m \), then \(ac \equiv bd \mod m \).

- **Inverse.** If \(\gcd(a, m) = 1 \), then there exists \(b \in \mathbb{Z} \) such that \(ab \equiv 1 \mod m \).

- **Cancellation.** If \(\gcd(k, m) = 1 \) and \(ak \equiv bk \mod m \), then \(a \equiv b \mod m \).

Warm-up: Division by Nine

- **Claim.** A number \(a \in \mathbb{N} \) is divisible by 9 if and only if the sum of its digits is divisible by 9.

- Is 123456789 divisible by 9?

\[
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 \\
4 + 5 = 9
\]

✓
Warm-up: Division by Nine (2)

• **Claim.** A number \(a \in \mathbb{N} \) is divisible by 9 if and only if the sum of its digits is divisible by 9.

 ◦ **Proof.** Write \(a \) as \(a_k a_{k-1} \cdots a_1 a_0 \) where \(a_i \) is the \((i + 1)\)'th rightmost digit of \(a \).

 \[
 a - (a_0 + a_1 + \cdots + a_k) = \\
 (a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \cdots) - (a_0 + \cdots + a_k) \\
 = a_1 \cdot 9 + a_2 \cdot 99 + a_3 \cdot 999 + \cdots
 \]

 ◦ That is, \(9 \mid a - (a_0 + a_1 + \cdots + a_k) \)

Warm-up: Division by Nine (3)

• **Claim.** A number \(a \in \mathbb{N} \) is divisible by 9 if and only if the sum of its digits is divisible by 9.

 ◦ **Proof.** Write \(a \) as \(a_k a_{k-1} \cdots a_1 a_0 \) where \(a_i \) is the \((i - 1)\)'th rightmost digit of \(a \).

 ◦ We have: \(9 \mid a - (a_0 + a_1 + \cdots + a_k) \).

 ◦ Equivalently,

 \[
 a \equiv (a_0 + a_1 + \cdots + a_k) \mod 9.
 \]
Casting Out Nines

• **Problem.** Is the following correct?
 $54,321 \cdot 98,765 = 5,363,013,565$.

• If this is correct, then
 $54,321 \cdot 98,765 \equiv 5,363,013,565 \mod 9$.

\[
\begin{align*}
5 + 4 + 3 + 2 + 1 & \equiv 6 \mod 9 \\
9 + 8 + 7 + 6 + 5 & \equiv 2 \mod 9 \\
5 + 3 + 6 + 3 + 0 + 1 + 3 + 5 + 6 + 5 & \equiv 1 \mod 9.
\end{align*}
\]

$6 \cdot 2 \equiv 1 \mod 9 \quad \times$

Casting Out Nines (cont.)

• Is the **casting out nines** technique always correct in verifying whether $a \cdot b = c$?

 ◦ If the calculation $\mod 9$ is wrong, the original calculation must be wrong.
 ◦ If the calculation $\mod 9$ is correct, the original calculation might still be wrong!

\[
1 \cdot 2 \equiv 11 \mod 9.
\]
Casting Out Nines Crank

• In the 1980’s, a math crank wrote a 124-page book explaining the law of conservation of numbers that he “developed for 24 years”.
• This law “was perfected with 100% effectiveness”.
• The book is basically 124 pages about the casting out nines trick. It does not mention that the method can sometimes fail.

Fermat’s Little Theorem

• Theorem. For any prime p and integer a,

$$a^p \equiv a \mod p.$$

• Examples:

$$15^7 \equiv 15 \equiv 1 \mod 7$$
$$20^{53} \equiv 20 \mod 53$$
$$2^{1009} \equiv 2 \mod 1009$$

Pierre de Fermat
Fermat’s Little Theorem

• **Theorem.** For any prime p and integer a,

\[a^p \equiv a \mod p. \]

• **Proof.** By induction on a:
 ◦ We prove only the case of $a \geq 0$.
 ◦ **Induction basis:** Obviously holds for $a = 0$.
 ◦ **Induction step:** Assume that the claim holds for a. In a later lecture we prove
 \[(a + b)^p \equiv a^p + b^p \mod p. \]
 ◦ Thus:
 \[(a + 1)^p \equiv a^p + 1 \equiv a + 1 \mod p. \]

A Corollary

• **Corollary.** If $a \in \mathbb{N}$ is not divisible by a prime p then $a^{p-1} \equiv 1 \mod p$.

• **Proof.**
 ◦ We have $\gcd(a, p) = 1$.
 ◦ Fermat’s little theorem: $a^p \equiv a \mod p$.
 ◦ Combine with cancelation property: If $\gcd(k, m) = 1$ and $ak \equiv bk \mod m$, then $a \equiv b \mod m$.
Euler’s Totient Function

- **Euler’s totient** \(\varphi(n) \) is defined as follows: Given \(n \in \mathbb{N} \setminus \{0\} \), then
 \[
 \varphi(n) = |\{x : 1 \leq x < n \text{ and } \gcd(x, n) = 1\}|.
 \]

- In more words: \(\varphi(n) \) is the number of natural numbers \(1 \leq x \leq n \) such that \(x \) and \(n \) are relatively prime.

\[
\varphi(12) = |\{1, 5, 7, 11\}| = 4
\]

Leonhard Euler

The Totient of a Prime

- **Observation.** If \(p \) is a prime number, then
 \[
 \varphi(p) = p - 1.
 \]

The first thousand values of \(\varphi(n) \):
Euler’s Theorem

- **Theorem.** For any pair \(a, n \in \mathbb{N} \) such that \(\text{GCD}(a, n) = 1 \), we have
 \[a^{\varphi(n)} \equiv 1 \pmod{n}. \]

- This is a generalization of **Fermat’s little theorem**: \(a^{p-1} \equiv 1 \pmod{p} \) (when \(p \) is prime).

The RSA Algorithm

- Public key cryptosystem.
- Discovered in 1977 by **Rivest, Shamir, and Adleman**.
- Still extremely common!

Ron Rivest Adi Shamir Leonard Adleman
RSA Public and Private Keys

1. Choose two LARGE primes p, q (say, 500 digits).
2. Set $n = pq$.
3. Compute $\varphi(n)$, and choose $1 < e < \varphi(n)$ such that $\text{GCD}(e, \varphi(n)) = 1$.
4. Find d such that $de \equiv 1 \mod \varphi(n)$.

Public key. n and e.
Private information. p, q, and d.

Preparing for Secure Communication

- Bob generates p, q, n, d, e, and transmits only e and n.

Alice

Eve

Bob

This is my public key (e, n)
Encrypting a Message

- Alice wants to send Bob the number $m < n$ without Eve deciphering it.
- Alice uses n and e to calculate $X \equiv m^e \mod n$, and sends X to Bob.

Decrypting a Message

- Bob receives message $X \equiv m^e \mod n$ from Alice. Then he calculates:

 $$X^d \mod n \equiv m^{ed} \mod n \equiv m^{1+k \cdot \varphi(n)} \mod n \equiv m \mod n.$$

 - Euler's Theorem: $m^{\varphi(n)} \equiv 1 \mod n$

 Slightly cheating since the theorem requires $GCD(m,n) = 1$
RSA in One Slide

- **Bob** wants to generate keys:
 - Arbitrarily chooses primes p and q, sets $n = pq$, and finds $\varphi(n)$.
 - Chooses e such that $\text{GCD}(\varphi(n), e) = 1$.
 - Find d such that $de \equiv 1 \mod \varphi(n)$.

- **Alice** wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$.

- **Bob** receives X.
 - Calculates $X^d \mod n$.

Example: RSA (with small numbers)

- **Bob** wants to generate keys:
 - Arbitrarily chooses primes $p = 61$ and $q = 53$. $n = 61 \cdot 52 = 3233$. $\varphi(3233) = 3120$.
 - Chooses $e = 17$ ($\text{GCD}(3120,17) = 1$).
 - For $de \equiv 1 \mod 3120$, we have $d = 2753$.

- **Alice** wants to pass bob $m = 65$.
 - Receives n, e from Bob. Returns $m^e = 65^{17} \equiv 2790 \mod 3233$.

- **Bob** receives $X \equiv 2790 \mod 3233$.
 - Calculates $X^d = 2790^{3233} \equiv 65 \mod 3233$.
Some Details

- Bob needs to:
 - Find two large primes p, q.
 - Calculate n, d, e.
- Alice needs to
 - Use n, e to calculate $X = m^e \mod n$.
- **Eve must not be able to**
 - Use n, e, X to find m.
- Bob needs to:
 - Use n, d, X to find m.

That is: Easy to compute a large power $\mod n$. Hard to compute a large “root” $\mod n$.

Taking Large Roots

- Eve has n, e, and Alice’s message X
 \[X \equiv m^e \mod n. \]
- If Eve can compute $X^{1/e} \mod n$, she can read the message! (i.e., if she can factor n).
- So far nobody knows how to compute this in a reasonable time.
- Or do they?
Computing a Large Power

• Problem. How can we compute \(65^{24000} \mod 9721\)?

• A naïve approach:
\[
65^2 \equiv 4225 \mod 9721 \\
65^3 \equiv 65 \cdot 65^2 \equiv 2437 \mod 9721 \\
65^4 \equiv 65 \cdot 65^3 \equiv 2869 \mod 9721 \\
\ldots
\]

• This approach requires \(2^{4000}\) (about \(1.3 \cdot 10^{1204}\)) steps. **Impossible!**

Computing a Large Power – Fast!

• Problem. How can we compute \(65^{24000} \mod 9721\)?
\[
65^2 \equiv 4225 \mod 9721 \\
65^4 \equiv 65^2 \cdot 65^2 \equiv 2869 \mod 9721 \\
65^8 \equiv 65^4 \cdot 65^4 \equiv 7195 \mod 9721 \\
65^{16} \equiv 65^8 \cdot 65^8 \equiv 3700 \mod 9721 \\
\ldots
\]

Only 4000 steps. **Easy!**
A Small Technical Issue

- What if we calculate a^b where b is not a power of two?
- We calculate $a, a^2, a^4, a^8, a^{16}, a^{32}, ...$
- Every number can be expressed as a sum of distinct powers of 2.

$$57 = 32 + 16 + 8 + 1$$

$$a^{57} = a^{32} a^{16} a^8 a$$

What is Left to Do?

- **Bob** wants to generate keys:
 - Arbitrarily chooses primes p and q. $n = pq \, \checkmark$ find $\varphi(n)$. n
 - Chooses e such that $\text{GCD}(\varphi(n), e) = 1$. e
 - Find d such that $de \equiv 1 \mod \varphi(n)$. d

- **Alice** wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n. \checkmark$

- **Bob** receives X.
 - Calculates $X^d \mod n. \checkmark$
The End

A CRYPTO NERD'S IMAGINATION:
His laptop's encrypted. Let's build a million-dollar cluster to crack it.

No good! It's 4096-bit RSA!

Blast! Our evil plan is foiled!

WHAT WOULD ACTUALLY HAPPEN:
His laptop's encrypted. Drug him and hit him with this $5 wrench until he tells us the password.

Got it.