MATH 109B-HOMEWORK SET 3

The homework set is due Thursday 1/29 at 2 pm.

1. Let β be a unit-speed curve in \mathbb{R}^3 with $\kappa > 0$, and suppose that E_1, E_2, E_3 is a frame field on \mathbb{R}^3 such that the restriction of these vector fields to β gives the Frenet-frame field T, N, B of β. Prove that

$$\omega_{12}(T) = \kappa, \omega_{13}(T) = 0, \omega_{23}(T) = \tau.$$

Then deduce the Frenet formulas from the connection equations.

2. Show that the osculating cubic parabola of a Frenet curve β in \mathbb{R}^3, defined by

$$s \to \beta(0) + sT(0) + \frac{s^2}{2}\kappa(0)N(0) + \frac{s^3}{6}\kappa(0)\tau(0)B(0)$$

has, at the point $s = 0$, the same curvature $\kappa(0)$ and torsion $\tau(0)$ as β itself.

3. Construct a non-planar curve which is a Frenet curve except for a single point and in the complement of this point satisfies $\tau \equiv 0$.