The homework set is due Thursday 1/22 at 2pm.

1. Let $\alpha : (a,b) \to \mathbb{R}^3$ be a curve parametrized by arc length with positive curvature $\kappa(s)$ for all $s \in (a,b)$. Let P be a plane satisfying:
 a. P contains the tangent line at s.

 b. Given any neighborhood $J \subset (a,b)$ of s, there exist points of $\alpha(J)$ in both sides of P.

Prove that P is the osculating plane of P at s.

2. Let $V = -yU_1 + xU_3$ and $W = \cos x U_1 + \sin x U_2$. Express the following covariant derivatives in terms of U_1, U_2 and U_3:
 (a) $\nabla_W V$.
 (b) $\nabla_V (xV - zW)$.
 (c) $\nabla_V (\nabla_V W)$.

3. For a Frenet curve β in \mathbb{R}^n, prove that the Frenet curvatures and the Frenet n-frame are invariant under Euclidean motions. (A Euclidean motion is a map $B : \mathbb{R}^n \to \mathbb{R}^n$ such that B can be written as $B(x) = Ax + b$ where $A^{-1} = A^T$ and $\det(A) = 1$.)

4. Let X be the special vector field $\Sigma x_i U_i$, where x_1, x_2 and x_3 are the natural coordinate functions of \mathbb{R}^3. Prove that $\nabla_V X = V$ for every vector field V.

5. Let β be a regular smooth curve in \mathbb{R}^3 that is parametrized by arc length and whose image lies on the unit sphere $S^2 \subset \mathbb{R}^3$. Set $J := Det(\beta, \beta', \beta'')$. Prove that $\kappa = \sqrt{1 + J^2}$ and $\tau = J'/(1 + J^2)$.

6. Find the connection forms of the natural frame field U_1, U_2, U_3.