In the sequel, V denotes a vector space defined over the field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} unless otherwise specified.

1. Read from the textbook: Chapter 5, Section 4-6, Chapter 6, Section 1-2.

2. [20pts] From the textbook: Chapter 5, Problem 4.4.

3. [20pts] From the textbook: Chapter 5, Problem 6.1 (only first and third matrices).

4. [40pts] Let $v_1 = (1, 0, 1)^T$, $v_2 = (2, 2, 0)^T$, and V be the subspace in \mathbb{R}^3 spanned by v_1 and v_2.
 (a) Find $\{u_1, u_2\}$ an orthogonal basis of V.
 (b) For $i = 1, 2$, express v_i as a linear combination of the new basis.
 (c) Compute the orthogonal complement of V in \mathbb{R}^3.
 (d) Complete $\{u_1, u_2\}$ to an orthogonal basis of \mathbb{R}^3.
 (e) Let $w_1 = (1, -1, -1)^T$, $w_2 = (1, 1, 1)^T$. For each of w_i, determine whether w_i belong to the space V. If possible, write w_i as a linear combination of v_1, v_2. If not, find the distance from w_i to V.
 (f) For $w = (3023, 2345, 678)^T$: does w belong to the space V? (Hint: do not compute the distance!)

5. [20pts] Let $T : V \to V$ be a self-adjoint linear operator on a real vector space V. Assume that $\langle Tv, v \rangle \geq 0$ for every $v \in V$. Show that for every positive integer k, there is a linear operator $S : V \to V$ such that $T = S^k$.