Homework 3 : Ma121a - Combinatorics

Homework is due on Thursday the 6th of November at 12:00. While collaboration is encouraged, you must write your own solutions.

1) A perfect matching in a graph \(G \) (not necessarily bipartite) is a matching so that each vertex of \(G \) is incident with one edge of the matching. Let \(G \) be a simple graph in which every vertex has degree 3. Prove that \(G \) has a perfect matching if and only if there is a decomposition of \(G \) into 3-edge paths. (4 marks)

2) Let \(S \) be the set \(\{1, 2, \ldots, mn\} \). We partition \(S \) into \(m \) sets, \(A_1, A_2, \ldots, A_m \) of size \(n \). Let a second partitioning into \(m \) sets of size \(n \) be \(B_1, B_2, \ldots, B_m \). Show that the sets \(A_i \) can be renumbered in such a way that \(A_i \cap B_i \neq \emptyset \). (Problem 5D). (3 marks)

3) Let \(A_1, A_2, \ldots, A_n \) be finite sets. Show that if

\[
\sum_{1 \leq i < j \leq n} \frac{|A_i \cap A_j|}{|A_i| \cdot |A_j|} < 1,
\]

then the sets \(A_1, A_2, \ldots, A_n \) have a system of distinct representatives. (Problem 5F). (4 marks)

4) Let \(n^2 + 1 \) points be given in \(\mathbb{R}^2 \). Prove that there is a sequence of \(n + 1 \) points \((x_1, y_1), \ldots, (x_{n+1}, y_{n+1})\) for which \(x_1 \leq x_2 \leq \cdots \leq x_{n+1} \) and \(y_1 \geq y_2 \geq \cdots \geq y_{n+1} \) or a sequence of \(n + 1 \) points for which \(x_1 \leq x_2 \leq \cdots \leq x_{n+1} \) and \(y_1 \leq y_2 \leq \cdots \leq y_{n+1} \). (4 marks)

5) Construct the maximal flow for the transportation network below. (Problem 7A).

![Transportation Network Diagram]

The source is \(s \) and the sink is \(t \).

6) Show that the dimension of the vector space of all circulations on a connected digraph \(D \) is \(|E(D)| - |V(D)| + 1 \). (Problem 7F) (2 marks)

(3 marks)