A Group

- A group consists of a set G and a binary operation \ast, satisfying the following.
 - **Closure.** For every $x, y \in G$, we have $x \ast y \in G$.
 - **Associativity.** For every $x, y, z \in G$, we have $(x \ast y) \ast z = x \ast (y \ast z)$.
 - **Identity.** The exists $e \in G$, such that for every $x \in G$, we have $e \ast x = x \ast e = x$.
 - **Inverse.** For every $x \in G$ there exists $x^{-1} \in G$ such that $x \ast x^{-1} = x^{-1} \ast x = e$.

By Adam Sheffer
Reminder: Subgroups

- A **subgroup** of a group G is a group with the same operation as G, and whose set of members is a subset of G.

[Diagram of subgroups]

Lagrange’s Theorem

- **Theorem.** If G is a group of a finite order n and H is a subgroup of G of order m, then $m | n$.
 - We will not prove the theorem.

- **Example.** The symmetry group of the square is of order 8.
 - The subgroup of rotations is of order 4.
 - The subgroup of the identity and rotation by 180° is of order 2.
Reminder: Parity of a Permutation

- **Theorem.** Consider a permutation \(\alpha \in S_n \). Then
 - Either every decomposition of \(\alpha \) consists of an **even** number of transpositions,
 - or every decomposition of \(\alpha \) consists of an **odd** number of transpositions.

- \((1 \ 2 \ 3)(4 \ 5 \ 6)\):
 - \((1 \ 3)(1 \ 2)(4 \ 6)(4 \ 5)\).
 - \((1 \ 4)(1 \ 6)(1 \ 5)(3 \ 4)(2 \ 4)(1 \ 4)\).

Subgroup of Even Permutations

- Consider the group \(S_n \):
 - **Recall.** A product of two even permutations is even.
 - The subset of even permutations is a subgroup. It is called the **alternating group** \(A_n \).
 - **Recall.** Exactly half of the permutations of \(S_n \) are even. That is, **the order of** \(A_n \) **is half the order of** \(S_n \).
Application of Lagrange’s Theorem

Problem. Let G be a finite group of order n and let $g \in G$ be of order m. Prove that $m|n$ and $g^n = 1$.

Proof.

- Notice that $\{1, g, g^2, \ldots, g^{m-1}\}$ is a cyclic subgroup of order m.
- By **Lagrange’s theorem** $m|n$.
- Write $n = mk$ for some integer k. Then $g^n = g^{mk} = (g^m)^k = 1$.

Atlas of Finite Groups

- (only in class)
Groups of a Prime Order

- **Claim.** Every group G of a prime order p is isomorphic to the cyclic group C_p.

- **Proof.**
 - By Lagrange’s theorem, G has no subgroups.
 - Thus, by the previous slide, every element of $G \setminus \{1\}$ is of order p.
 - G is cyclic since any element of $G \setminus \{1\}$ generates it.

Symmetries of a Tiling

- Given a repetitive tiling of the plane, its symmetries are the transformations of the plane that
 - Map the tiling to itself (ignoring colors).
 - Preserve distances.

- These are combinations of translations, rotations, and reflections.
Example: Square Tiling

- What symmetries does the square tiling have?
 - Translations in every direction.
 - Rotations around a vertex by $0^\circ, 90^\circ, 180^\circ, 270^\circ$.
 - Rotations around the center of a square by $0^\circ, 90^\circ, 180^\circ, 270^\circ$.
 - Reflections across vertical, horizontal and diagonal lines.
 - Rotations around the center of an edge by 180°.

Wallpaper Groups

- Given a tiling, its set of symmetries is a group called a wallpaper group (not accurate! More technical conditions).
 - **Closure.** Composing two symmetries results in a transformation that preserves distances and takes the lattice to itself.
 - **Associativity.** Holds.
 - **Identity.** The “no operation” element.
 - **Inverse.** Since symmetries are bijections from the plane to itself, inverses are well defined.
Wallpaper Groups

• There are exactly 17 different wallpaper groups.

• That is, the set of all repetitive tilings of the plane can be divided into 17 classes. Two tilings of the same class have the same “behavior”.

Equivalence Relations

• **Recall.** A relation R on a set X is an **equivalence relation** if it satisfies the following properties.
 ◦ **Reflexive.** For any $x \in X$, we have xRx.
 ◦ **Symmetric.** For any $x, y \in X$, we have xRy if and only if yRx.
 ◦ **Transitive.** If xRy and yRz then xRz.
Example: Equivalence Relations

- **Problem.** Consider the relation of congruence mod 31, defined over the set of integers \(\mathbb{Z} \). Is it an equivalence relation?
- **Solution.**
 - Reflexive. For any \(x \in \mathbb{Z} \), we have \(x \equiv x \mod 31 \).
 - Symmetric. For any \(x, y \in \mathbb{Z} \), we have \(x \equiv y \mod 31 \) iff \(y \equiv x \mod 31 \).
 - Transitive. If \(x \equiv y \mod 31 \) and \(y \equiv z \mod 31 \) then \(x \equiv z \mod 31 \).

Equivalence Via Permutation Groups

- Let \(G \) be a group of permutations of the set \(X \). We define a relation on \(X \):
 \(x \sim y \iff g(x) = y \) for some \(g \in G \).
- **Claim.** \(\sim \) is an equivalence relation.
 - Reflexive. The group \(G \) contains the identity permutation \(\text{id} \). For every \(x \in X \) we have \(\text{id}(x) = x \) and thus \(x \sim x \).
 - Symmetric. If \(x \sim y \) then \(g(x) = y \) for some \(g \in G \). This implies that \(g^{-1} \in G \) and \(x = g^{-1}(y) \). So \(y \sim x \).
Equivalence Via Permutation Groups

- Let G be a group of permutations of the set X. We define a relation on X:

 $x \sim y \iff g(x) = y$ for some $g \in G$.

- **Claim.** \sim is an equivalence relation.

 - **Transitive.** If $x \sim y$ and $y \sim z$ then $g(x) = y$ and $h(y) = z$ for $g, h \in G$. Then $hg \in G$ and $hg(x) = z$, which in turn implies $x \sim z$.

Orbits

- Given a permutation group G of a set X, the equivalence relation \sim partitions X into *equivalence classes* or *orbits*.

 - For every $x \in X$ the orbit of x is

 $Gx = \{ y \in X \mid x \sim y \}$

 $= \{ y \in X \mid g(x) = y \text{ for some } g \in G \}$.

Example: Orbits

- Let $X = \{1, 2, 3, 4, 5\}$ and let $G = \{\text{id}, (1\ 2), (3\ 4), (1\ 2)(3\ 4)\}$.
- What are the equivalence classes that G induces on X?
 - $G1 = G2 = \{1, 2\}$.
 - $G3 = G4 = \{3, 4\}$.
 - $G5 = \{5\}$.

Stabilizers

- Let G be a permutation group of the set X.
- Let $G(x \rightarrow y)$ denote the set of permutations $g \in G$ such that $g(x) = y$.
- The stabilizer of x is $G_x = G(x \rightarrow x)$.
Example: Stabilizer

- Consider the following permutation group of \{1,2,3,4\}:
 \[G = \{ \text{id, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (2 4), (1 3), (1 2)(3 4), (1 4)(2 3)} \}. \]

- The stabilizers are:
 \[\begin{align*}
 G_1 &= \{ \text{id, (2 4)} \}. \\
 G_2 &= \{ \text{id, (1 3)} \}. \\
 G_3 &= \{ \text{id, (2 4)} \}. \\
 G_4 &= \{ \text{id, (1 3)} \}.
 \end{align*} \]

Stabilizers are Subgroups

- **Claim.** \(G_x \) is a subgroup of \(G \).
 - **Closure.** If \(g, h \in G_x \) then \(g(x) = x \) and \(h(x) = x \). Since \(gh(x) = x \) we have \(gh \in G_x \).
 - **Associativity.** Implied by the associativity of \(G \).
 - **Identity.** Since \(\text{id}(x) = x \), we have \(\text{id} \in G_x \).
 - **Inverse.** If \(g \in G_x \) then \(g(x) = x \). This implies that \(g^{-1}(x) = x \) so \(g^{-1} \in G_x \).
Cosets

- Let H be a subgroup of the group G. The left coset of H with respect to $g \in G$ is $gH = \{a \in G \mid a = gh \text{ for some } h \in H\}$.

Example. The coset of the alternating group A_n with respect to a transposition $(x \ y) \in S_n$ is the subset of odd permutations of S_n.

$G(x \rightarrow y)$ are Cosets

- Claim. Let G be a permutation group and let $h \in G(x \rightarrow y)$. Then $G(x \rightarrow y) = hG_x$.

Proof.
- $hG_x \subseteq G(x \rightarrow y)$. If $a \in hG_x$, then $a = hg$ for some $g \in G_x$. We have $a \in G(x \rightarrow y)$ since $a(x) = hg(x) = h(x) = y$.
- $G(x \rightarrow y) \subseteq hG_x$. If $b \in G(x \rightarrow y)$ then $h^{-1}b(x) = h^{-1}(y) = x$.

That is, $h^{-1}b \in G_x$, which implies $b \in hG_x$.
Sizes of Cosets and Stabilizers

- **Claim.** Let G be a permutation group on X and let G_x be the stabilizer of $x \in X$. Then $|G_x| = |hG_x|$ for any $h \in G$.
 - **Proof.** By the Latin square property of G.

- **Corollary.** The size of $G(x \to y)$:
 - If y is in the orbit G_x then $|G(x \to y)| = |G_x|$.
 - If y is not in the orbit G_x then $|G(x \to y)| = 0$.

Sizes of Orbits and Stabilizers

- **Theorem.** Let G be a group of permutations of the set X. For every $x \in X$ we have $|Gx| \cdot |G_x| = |G|$.
 - *The orbit of* x
 - *The stabilizer of* x
Example: Orbits and Stabilizers

- Consider the following permutation group of \{1,2,3,4\}:
 \[G = \{ \text{id}, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2),
 (2 \ 4), (1 \ 3), (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3) \}. \]
 - We have \(|G| = 8 \).
 - We have the orbit \(G1 = \{1,2,3,4\} \). So \(|G1| = 4 \).
 - We have the stabilizer \(G_1 = \{ \text{id}, (2 \ 4) \} \). So \(|G_1| = 2 \).
 - Combining the above yields \(|G| = 8 = |G1| \cdot |G_1| \).

A Useful Table

- Let \(G = \{ g_1, g_2, \ldots, g_n \} \) be a group of permutations of \(X = \{ x_1, x_2, \ldots, x_m \} \).
 - For an element \(x \in X \), we build the following table, where \(\checkmark \) implies that \(g_i(x) = x_j \).

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>\ldots</th>
<th>(x_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_1)</td>
<td>(\checkmark)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_2)</td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\checkmark)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14
Table Properties 1

• How many ✓’s are in the table?
 ◦ Since $g_i(x)$ has a unique value, each row contains exactly one ✓.
 ◦ The total number of ✓’s in the table is $|G|$.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_2</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Table Properties 2

• How many ✓’s are in the column of x_i?
 ◦ If x_i is not in the orbit Gx, then 0.
 ◦ If x_i is in the orbit Gx, then
 $$|G(x \to y)| = |G_x|.$$
Proving the Theorem

- **Theorem.** Let G be a group of permutations of the set X. For every $x \in X$ we have
 \[|Gx| \cdot |G_x| = |G|. \]

- **Proof.**
 - **Counting by rows**, the number of \checkmark’s in the table is $|G|$.
 - **Counting by columns**, there are $|Gx|$ non-empty columns, each containing $|G_x|$ \checkmark’s.
 - That is, $|G| = |Gx| \cdot |G_x|$.

Double Counting

- Our proof technique was to count the same value (the number of \checkmark’s in the table) in two different ways.
- This technique is called *double counting* and is very useful in combinatorics.
The End: Alhambra

- **Alhambra** is a palace and fortress complex located in Granada, Spain.
 - The Islamic art on the walls is claimed to contain all 17 wallpaper groups.
 - Mathematicians like to visit the palace and look for as many types as they can find.