Ma 5a: Midterm Practice Problems

1. Assume H and K are subgroups of G.

 (a) Show that if $K \subseteq H$ then $N_H(K) = N_G(K) \cap H$.

 (b) Show that if $K \trianglelefteq G$ then $H \cap K \trianglelefteq H$.

2. Show that if H and K are normal subgroups of G. Then HK is a normal subgroup of G. Show that the same is true if H is only a subgroup of G but not normal.

3. Let $\varphi : G \to G'$ be a homomorphism. Show that if H' is a subgroup of G', then $\varphi^{-1}(H)$ is a subgroup of G containing $\ker \varphi$.

4. Assume G is a finite abelian group. Show that the map $a \mapsto a^n$ is an automorphism of G if and only if $(m, |G|) = 1$. (Hint: Use Lagrange Theorem to avoid tedious argument.)

5. Show that if H is a normal subgroup of S_4 which contains (13) and (1234) then $H = S_4$.

6. Show that if a and b are two elements in an abelian group with order 3 and 5 respectively, then ab has order 15.

7. Show every element in S_5 has order a divisor of 120.

8. Draw the subgroup lattice for $\mathbb{Z}/24\mathbb{Z}$ with indices marked. Is this group isomorphic to S_4?

9. Find the index of $< (12), (1234) >$ in S_5.

10. If H is a subgroup of G and $[G : H]$ is a prime. Show that any subgroups of G containing H is either equal to H or G.

11. Assume G is a group acting on the set X. Consider $\mathbb{C}(X)$, the set of all complex-valued functions $f : X \to \mathbb{C}$ on X. For any $g \in G$, $f \in \mathbb{C}(X)$, define $g.f : X \to \mathbb{C}$ by $(g.f)(x) := f(g^{-1}x)$. Show that this defines an action of G on $\mathbb{C}(X)$.

12. Let G be a group that acts on a nonempty set X. For $x \in X$, define a subset of $G.x = \{ g.x \in X \mid g \in G \}$ called the orbit of x under the action of G. Let \sim be a relation on X such that $x \sim y$ if and only if $y \in G.x$. Show that \sim is an equivalent relation on X with equivalence classes the set of orbits $G.x$, $x \in X$.

13. Find the number of elements in S_7 which are conjugate to $(23)(47)$.

14. Describe the set of left cosets of $V_4 = \{ 1, (12)(34), (13)(24), (14)(23) \}$ in S_4. Is V_4 normal in S_4?

15. Show that the group $\mathbb{Z}/30\mathbb{Z}$ can be generated by $\bar{6}, \bar{10}, \bar{15}$ elements.

16. Show that if $|G| = 289$, then the group G is abelian. (Hint: Show that $Z(G) = G$.)