18 Gaussian Integers

Definition: $\mathbb{Z}[i] \subseteq \mathbb{C} = \{a + ib : a, b \in \mathbb{Z}\}$

Elements of $\mathbb{Z}[i]$ are called Gaussian integers, which can be added, subtracted and multiplied. But we cannot divide in $\mathbb{Z}[i]$. For example, \(1 + i \neq 1 + i\) and \(1 + i \notin \mathbb{Z}[i]\). Note: if $\alpha \beta = 0 \Rightarrow \alpha = 0$ or $\beta = 0$. Define the norm

$$N : \mathbb{Z}[i] \rightarrow \mathbb{Z}_+$$

by

$$\alpha = a + bi \mapsto a^2 + b^2 = (a + bi)(c - bi) = \alpha \overline{\alpha}$$

The complex conjugation map $\alpha \mapsto \overline{\alpha}$ satisfies:

$$\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}, \quad \overline{\alpha \beta} = \overline{\alpha} \cdot \overline{\beta}.$$

So

$$N(\alpha \beta) = \overline{\alpha \beta} \overline{\alpha \beta} = \alpha \overline{\alpha} \beta \overline{\beta} = N(\alpha)N(\beta)$$

Notice that in \mathbb{C}, $\alpha^{-1} = \frac{\overline{\alpha}}{N(\alpha)}$.

Definition: α, β in $\mathbb{Z}[i]$. Say $\alpha \mid \beta$ iff $\beta = \alpha \cdot \gamma$, some $\gamma \in \mathbb{Z}[i]$.

Definition: A unit in $\mathbb{Z}[i]$ is an element α in $\mathbb{Z}[i]$ such that $\alpha \beta = 1$ for some $\beta \in \mathbb{Z}[i]$. If α is a unit in $\mathbb{Z}[i]$, say $\alpha \beta = 1$,

$$N(\alpha \beta) = N(1) = 1 = N(\alpha)N(\beta).$$

If $\alpha = a + bi$, $a, b \in \mathbb{Z}$,

$$(a^2 + b^2) = N(\beta) = 1$$

Hence

$$a = 0, \quad b = \pm 1, \quad \text{or} \quad a = \pm 1, \quad b = 0.$$

This means $\alpha = \pm 1$ or $\pm i$. Put

$$D = \{a + bi : a \geq 1, \ b \geq 0\}$$

$\alpha \sim \beta$ (“associated”) if $\alpha = u\beta$ for some unit u in $\mathbb{Z}[i]$.

If $\alpha \neq 0$, there is exactly one associate of α in D, the normalized associate.

$\pi \in \mathbb{Z}[i]$ is called a Gaussian prime if its only divisors are units and its associates.

Question: What are the Gaussian primes?
\[(1+i)(1-i) = 2 \text{ so } (1\pm i)|2. \text{ Hence } 2 \text{ is not a Gaussian prime. } 1+i, 2+i \text{ are Gaussian primes, so is } 1+2i \text{ because it is an associate of } 2+i. \text{ (Conjecture: } a+ib \text{ is Gaussian prime iff } (a,b) = 1.\)

Unsolved Problem: If you are allowed only steps of bounded size, is it possible to walk to \(\infty\) stepping only on Gaussian primes?

Euclidean algorithm: Recall the norm function

\[N: \mathbb{Z}[i] \rightarrow \mathbb{Z} \]

\[a + bi \mapsto a^2 + b^2 \]

\[\alpha \mapsto \alpha \bar{\alpha}, \]

which is multiplicative, i.e.,

\[N(\alpha\beta) = N(\alpha)N(\beta) \]

Given \(\alpha, \beta \in \mathbb{Z}[i], \beta \neq 0, \exists \text{ [unique] } \rho, \kappa \in \mathbb{Z}[i] \text{ such that } \alpha = \kappa\beta + \rho \text{ and } 0 \neq N(\rho) \leq \frac{N(\beta)}{2}.\)

Proof: \(\forall x \in \mathbb{R}, \text{ let round}(x) = \text{ closest integer to } x. \text{ Then } |x - \text{round}(x)| \leq \frac{1}{2}. \)

Choose \(\text{round}(\frac{1}{2}) = 1\) and let \(\text{round}(x+iy) = \text{round}(x)+i\text{round}(y).\)

Let \(z = \frac{a}{\beta} = C.\)

Let \(\kappa = \text{round}(z).\)

\[N(z - \kappa) = N(z - \text{round}(z)). \]

\[= N((x - \text{round}(x)) + i(y - \text{round}(y))) \]

\[= (x - \text{round}(x))^2 + (y - \text{round}(y))^2 \leq \frac{1}{2} \]

Since \(\frac{\alpha}{\beta} = \kappa + \left(\frac{\alpha}{\beta} - \kappa\right),\)

\[\alpha = \beta\kappa + \rho, \]

with \(\rho = (\alpha - \beta\kappa), 0 \leq N(\rho).\)

Then \(z - \kappa = \frac{\alpha}{\beta} - \kappa = \frac{\alpha - \kappa\beta}{\beta}, \text{ and } N(z - \kappa) = \frac{N(\alpha - \kappa\beta)}{N(\beta)} = \frac{N(\rho)}{N(\beta)} \leq \frac{1}{2}.\)
Corollary: The ring $\mathbb{Z}[i]$ has unique factorization into Gaussian primes.

Proof: Similar to the proof in \mathbb{Z}, with $\gcd(\alpha, \beta)$ being defined using the Euclidean algorithm.

Now investigate what Gaussian primes look like.

$$N(3 + i) = \sqrt{9 + 1} = 10 = 2 \cdot 5$$

[Notice relationship to sums of squares!] So $3 + i$ must be divisible by something of norm 2 and something of norm 5. $2 + i$, $2 - i$ has norm 5, while $1 + i$ has norm 2.

$$(2 + i)(1 + i) = 2 + 3i - 1 = 1 + 3i$$

$$N(2 - i)(1 + i) = i + 3$$

Theorem: Let p be a prime of \mathbb{Z}. If p is not a Gaussian prime then $p = \pi\bar{\pi}$, π, $\bar{\pi}$ Gaussian primes. ($\pi \not\sim \bar{\pi}$ if p is odd). Also, p has no other divisors. Moreover, p is not a Gaussian prime iff

$$p = 2 = (1 + i)^2$$

or

$$p \equiv 1 \pmod{4}.$$

Consequently if $p \equiv 3 \pmod{4}$, p is a Gaussian prime.

Conversely, every Gaussian prime π is either a rational prime $\equiv 3 \pmod{4}$ or its norm is a rational prime $\not\equiv 3 \pmod{4}$. In the latter case, $N(\pi) = 2$ iff $\pi \sim \bar{\pi}$.

Proof: By unique factorization, we may write $p = w\pi_1 \cdots \pi_m$, with w a unit, and the π_j’s Gaussian primes.

$$N(p) = pp\bar{p} = p^2 = \prod_{j=1}^{m} N(\pi_j).$$

Thus \exists unique j such that $N(\pi_j) = p^2$. Then $m = 1$ and $p = w\pi_1$. Consequently, p is a Gaussian prime. So if $p \not\sim$ Gaussian prime, then none of the $N(\pi_j)$’s are p^2. So

$$p = \pi_1\pi_2$$
with π_1, π_2 Gaussian primes, $N(\pi_i) = p$. Since $\pi_1, \pi_2 \not\in \mathbb{Z}$, and $\pi_1 \pi_2 \in \mathbb{Z}$, $\pi_2 = \overline{\pi_1}$.

Assume p is odd. Then $\pi \sim \overline{\pi}$ means $\pi = a + bi \sim a - bi$. The associates of π are $\pm(a + ib)$ and $\pm(a + ib)$. This is because the units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$. Then $a - ib = \gamma(a + ib)$, where $\gamma \in \{1 - 1, i, -i\}$. If $\gamma = 1$, $p = a^2$, if $\gamma = -1$, $p = b^2$; and if $\gamma = \pm i$, $p = 2a^2$. None of these is a possibility as p is an odd prime. Thus $\pi, \overline{\pi}$ are not associates, and $p = \pi \overline{\pi}$, with π Gaussian prime of norm p.

When $p = 2$, we have $2 = N(1 + i) = (1 + i)(1 - i)$, and $1 - i = -i(1 + i)$.

We have yet to show that an odd rational prime p is not a Gaussian prime precisely when $p \equiv 1 \pmod{4}$. But we have just shown that p must be of the form $N(\pi)$ for a Gaussian prime π when p is not itself a Gaussian prime. Then $\exists x, y \in \mathbb{Z}$ such that

$$p = x^2 + y^2.$$

As we have seen in the previous section, this implies, as derived, that $p \equiv 1 \pmod{4}$. But we can also check this directly. Modulo 4, the square of any integer must be 0 or 1. Then $p = x^2 + y^2$ must be 0 or 1 mod 4. Since p is odd, it must be 1 mod 4.

Now let π be any Gaussian prime, which is not in \mathbb{Q}. We have to show that $N(\pi) = p$ with $p \equiv 1 \pmod{4}$ or $p = 2$. Since $N(\pi)$ is an integer ≥ 1, and since $N(\pi)$ cannot be 1 as π is not a unit, there must be some (rational) prime q dividing $N(\pi)$. Write $N(\pi) = q_1q_2\ldots q_r$, with each q_j a rational prime. Now since $N(\pi) = \pi \overline{\pi}$, and since π is a Gaussian prime, viewing $\pi \overline{\pi} = q_1q_2\ldots q_r$ as an equation in $\mathbb{Z}[i]$, we see that π must divide some q_j, call it p. By what we proved above, p must be the norm of some Gaussian prime π_1. Then π divides $p = \pi_1 \overline{\pi_1}$. So π must divide π_1 or $\overline{\pi_1}$, say it divides π_1. Then $\pi \sim \pi_1$, and we will have $p = u\pi \overline{\pi}$, for some unit u. But both p and $\pi \overline{\pi}$ are real and positive, so u must be 1. The rest is clear.