17 Sums of two squares

\[n = a^2 + b^2; \quad a, b \geq 0, \quad n \geq 1 \]

Note:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>2</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>3</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>4</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>5</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>6</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>7</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>8</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>9</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>10</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>11</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>12</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>13</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>14</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
<tr>
<td>15</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
<td>1 (\equiv 1 \mod 2)</td>
</tr>
</tbody>
</table>

For all integers \(a, b \), we have

\[a^2 + b^2 \equiv 0, 1 \text{ or } 2 \mod 4 \]

Indeed, \(a, b = 0, 1, 2, 3 \mod 4 \) \(\Rightarrow a^2, b^2 \equiv 0, 1 \mod 4 \) \(\Rightarrow a^2 + b^2 \equiv 0, 1, 2 \mod 4 \). So the numbers congruent to 3 mod 4 cannot be written as sums of 2 squares. It appears from this table that if \(p \) is an odd prime, we may write \(p = a^2 + b^2 \) iff \(p \neq 3 \mod 4 \).

Lemma A: If \(m, n \) are sums of 2 squares, then so is their product \(mn \).

Proof: Use the identity \((A^2 + B^2)(x^2 + y^2) = (Ax + By)^2 + (Ay - Bx)^2\)

Proposition A. Let \(p \) be a prime congruent to 1 mod 4. Then \(p \) is a sum of two squares in \(\mathbb{Z} \).

Proof of Proposition A. First we claim that there exists integers \(A, B, m \), with \(1 \leq m < p \), such that

\[mp = A^2 + B^2 \tag{1} \]
Indeed, since \(p \equiv 1 \) (mod 4), \((\frac{-1}{p}) = 1 \) and so we can find \(n \in \mathbb{Z} \) such that \(n^2 \equiv -1 \) (mod \(p \)). It was proved earlier that the set \(T : \{1, 2, \ldots, \frac{p-1}{2}\} \) is a set of representatives for the squares in \((\mathbb{Z}/p)^*\). Hence we may choose \(n \in T \) such that

\[
n^2 + 1 = mp,
\]

for some integer \(m \geq 1 \). Since \(n < \frac{p}{2} \), we have:

\[
m = \frac{1}{p}(n^2 + 1) < \frac{1}{p} \left(\frac{p^2}{4} + 1 \right) < p,
\]

which proves the claim.

Now there may be more than one \(m \) for which (1) holds. (Of course \((A, B)\) will depend on \(m \).). So we may, and we will, choose \(m \) to be the smallest integer \(\geq 1 \) for which (1) holds. Of course, \(m < p \). We are done if \(m = 1 \), so we will assume that \(m > 1 \) and derive a contradiction.

Find \(x, y \in \mathbb{Z} \cap [-\frac{m}{2}, \frac{m}{2}] \) such that \(x \equiv A \) mod \(m \), \(y \equiv B \) mod \(m \).

Then

\[
x^2 + y^2 = km, \text{ for some integer } k \geq 1, \tag{2}
\]

since \(A^2 + B^2 \equiv 0 \) mod \(m \).

By construction,

\[
x^2 + y^2 \leq \frac{m^2}{4} + \frac{m^2}{4} = \frac{m^2}{2} = \frac{m}{2} \cdot m.
\]

So \(k < m \). Applying the identity proving Lemma 1, we obtain

\[
(x^2 + y^2)(A^2 + B^2) = km \cdot mp = m^2 kp
\]

\[
= (Ax + By)^2 + (Ay - Bx)^2.
\]

Notice that \(Ay \equiv xy \equiv xB \) (mod \(m \)).

So

\[
m^2|(Ay - Bx)^2,
\]

and this gives

\[
m^2|(Ax + By)^2.
\]
Hence \(m | (Ax + By) \), and
\[
\left(\frac{Ax + By}{m} \right)^2 + \left(\frac{Ay - Bx}{m} \right)^2 = kp. \tag{3}
\]
Since \(k < m \), and (3) gives a contradiction to the minimality of \(m \).

Example: \(p = 41, \ 9^2 = 81 \equiv -1 \pmod{p} \)

Start with \(9^2 + 1^2 = 2 \cdot 41, \ x, y \in \mathbb{Z} \cap [-1, 1] \) such that \(x \equiv 9 \pmod{2}, \ y \equiv 1 \pmod{2} \). Pick \(x = y = 1 \),
\[
\frac{Ax + By}{m} = \frac{9 \cdot 1 + 1 \cdot 1}{2} = 5
\]
\[
\frac{Ay - Bx}{m} = \frac{9 \cdot 1 - 1}{2} = 4
\]
This gives:
\[
41 = 5^2 + 4^2.
\]

Proposition C. Let \(p \) be a prime \(\equiv 3 \pmod{4} \). Then no integer \(n \) divisible precisely by an odd power of \(p \) can be written as a sum of two squares.

Theorem Let \(n \geq 1 \) be an integer. Then \(n \) can be written as a sum of two squares iff every prime \(\equiv 3 \pmod{4} \) occurs to an even power in its prime factorization.

Proof of Theorem (modulo Proposition C)
\((\Rightarrow) \): This is because Proposition C says that any prime congruent to 3 mod 4 has to occur to an even power \(r \) in \(n \).
\((\Leftarrow) \): Let \(r = p_1^{n_1} \cdots p_m^{n_m} \), with \(p_i \equiv 1 \pmod{4}, \ q_j \equiv 3 \pmod{4} \). By Prop. B, \(p_i \) is an sum of two squares, and \(q_j^{2n_j} = (q_j^{n_j})^2 + 0^2 \). Thus \(n \) is a product of numbers which are sums of two squares, and we are done by applying Lemma A.

Proof of Proposition C: Let \(p \equiv 3 \pmod{4} \) be a prime. Suppose
\[
n = a^2 + b^2, \ \text{with} \ p^{2s+1} \| n.
\]
Let \(d = (a, b) \), so that \(d^2 | (a^2 + b^2) = n \). Hence
\[
\left(\frac{n}{d} \right)^2 = \left(\frac{a}{d} \right)^2 + \left(\frac{b}{d} \right)^2, \ \text{if} \ m = \frac{n}{d}, \ x = \frac{a}{d}, \ y = \frac{b}{d}.
\]
So we get
\[m = x^2 + y^2, \quad \text{with } \gcd(x, y) = 1, \]
and
\[p^{2s+1} \parallel m. \]
In particular, \(p \mid m \), but \(p \) does not divide both \(x \) and \(y \). But if \(p \mid x \), as
\[m = x^2 + y^2, \quad p \mid y^2, \quad \text{and so } p \nmid y. \]
Consequently, \(p \nmid xy \).

It follows, since \((p, x) = 1\), that
\[Ax - Bp = t \]
is solvable in \(\mathbb{Z} \) for all \(t \). Take \(t = y \) to get \(Ax \equiv y \pmod{p} \).

Then
\[0 \equiv x^2 + y^2 \equiv x^2(A^2 + 1) \pmod{p}. \]
Since \(p \nmid x \), get:
\[A^2 + 1 \equiv 0 \pmod{p}. \]
But \((\frac{-1}{p}) = -1 \) as \(p \equiv 3 \pmod{4}, \) giving a contradiction.

Questions:

1. What if one considers sums of \(k \) squares with \(k > 2 \), e.g., \(7 = 2^2 + 1^2 + 1^2 \).

In Section 19, we will prove that any positive integer can be written as a sum of four squares.

2. If \(n = a^2 + b^2 \), in how many ways can one write \(n \) as a sum of two squares?

Example: \(25 = 5^2 + 0^2 = 4^2 + 3^2 \)
\(65 = 8^2 + 1^2 = 7^2 + 4^2 \)

Note in general that
\[
(x^2 + y^2)(A^2 + B^2) = (xA + yB)^2 + (xB - yA)^2 \\
= (xA - yB)^2 + (xB + yA)^2
\]

Example:
\[
25 = 5 \cdot 5 = + (2^2 + 1)(2^2 + 1) \\
= (x \cdot 2 + 1 \cdot 1)^2 + (2 \cdot 1 - 1 \cdot 2)^2 = 5^2 + 0^2 \\
= (2 \cdot 2 - 1 \cdot 1)^2 + (2 \cdot 1 - 1 \cdot 2)^2 = 3^2 + 4^2
\]

When do these two ways of writing it coincide?
They do iff we have

$$(xA + yB)^2 = (xA - yB)^2$$

or

$$(xA + yB)^2 = (xB + yA)^2$$

First case:
Square both sides to get

$$xyAB = 0$$ i.e., at least one of x, y, A, B is zero.

Second case: Here we get

$$x^2A^2 + y^2B^2 = y^2A^2 + x^2B^2$$

$$\Leftrightarrow x^2(A^2 - B^2) + y^2(B^2 - A^2) = 0$$

$$\Leftrightarrow (x^2 - y^2)(A^2 - B^2) = 0$$

$$\Leftrightarrow x = y \text{ or } A = B$$

Claim: If $p \equiv 1 \pmod{4}$ is a prime, then $p = a^2 + b^2$ uniquely.

Indeed, suppose $p = a^2 + b^2 = c^2 + d^2$, for $a, b, c, d \in \mathbb{Z}$. Then

$$a^2d^2 - b^2c^2 = (a^2 + b^2)d^2 - (c^2 + d^2)b^2 = p(d^2 - b^2)$$

$$\Rightarrow ad \equiv bc \pmod{p}, \text{ or } ad \equiv -bc \pmod{p}.$$

Clearly $0 < a, b, c, d < \sqrt{p}$. So

$$ad \equiv bc, \text{ or } ad = p - bc.$$

If $ad = p - bc$

$$p^2 = (a^2 + b^2)(c^2 + d^2) = (ad + bc)^2 + (ac - bd)^2$$

$$= p^2 + (ac - bd)^2 \Rightarrow ac = bd$$

Hence $a|bd$, and gcd$(a, b) = 1. \Rightarrow a|d$. Also $d|ac$, and gcd$(c, d) = 1$, so $d|a$. So $a = \pm d$, so $a = d. \Rightarrow b = c.$

If $ad = bc$, we find that $a = c, b = c$, and also $c = d$. Now the uniqueness assertion follows.