Midterm Exam 2015 solutions: Do not read if you have not taken midterm exam.

1a. We will first show by induction that any polynomial \(p \) of degree \(n \geq 1 \) is equal to its Taylor Series about \(c \). (This was essentially done in Cranks section 1.2, although the induction was suppressed.) First we do the base case. Let \(p(x) = ax + b \) be of degree 1. Then \(p(c) = ac + b \). And we have the formula,

\[
p(x) = a(x - c) + ac + b = p'(c)(x - c) + p(c),
\]

which is the Taylor expansion.

Next we suppose the induction hypothesis, namely that if \(p(x) \) is of degree \(n \), then

\[
p(x) = p(c) + \sum_{j=1}^{n} \frac{1}{j!} p^{(j)}(c)(x - c)^j.
\]

Now suppose \(p(x) = ax^{n+1} + p_{\text{lower}}(x) \), where \(p_{\text{lower}} \) is a polynomial of degree at most \(n \). Observe that \(p^{(n+1)}(c) = (n + 1)!a \). Let

\[
a(x) = p(x) - a(x + c)^{n+1}.
\]

Note that \(a(x) \) is of degree at most \(n \) and that for any natural number \(j \leq n \), it is the case that

\[
a^{(j)}(c) = p^{(j)}(c),
\]

since the \(j \)th derivative of \((x - c)^{n+1} \) vanishes at \(c \). Note also that \(a(c) = p(c) \). Now we apply the induction hypothesis to \(a(x) \), concluding that

\[
p(x) = p(c) + \sum_{j=1}^{n+1} \frac{1}{j!} p^{(j)}(c)(x - c)^j.
\]

This actually solves the problem by letting \(r = p(c) \) and

\[
q(x) = \sum_{j=1}^{n+1} \frac{1}{j!} p^{(j)}(c)(x - c)^{j-1}.
\]

1b. In this problem, we are trying to explain how polynomial division works.

We begin with the base case. Let \(p(x) \) be a polynomial of degree 1 and \(s(x) \) a nonzero polynomial of degree either 0 or 1. If \(s(x) \) is of degree 0, then it’s just a number,
s(x) = s. Then r(x) = 0 and q(x) = \frac{p(x)}{s}. If s(x) is of degree 1, then it can be written as s(x) = s'(0)(x - b), for some value b and we can reduce the problem to the previous part.

Now we assume the induction hypothesis. If p(x) is of degree at most n and s(x) is nonzero and of degree m ≤ n, then there is q(x) of degree at most n − m and r(x) of degree at most m − 1 with p(x) = s(x)q(x) + r(x).

Now let p(x) be of degree n + 1. Then p(x) = ax^{n+1} + p_{lower}(x), where p_{lower}(x) is a polynomial of degree at most n. Further s(x) = bx^m + s_{lower}(x), with m ≤ n + 1. The first term of q should be \frac{a}{b}x^{n+1−m}. Thus we define

\[p_{new}(x) = p(x) − \frac{a}{b}x^{n+1−m}s(x). \]

Now there are two cases. In the first case, p_{new} is of lower degree than m. In this case, we can’t apply the induction hypothesis. But there’s no problem. We let q(x) = \frac{a}{b}x^{n+1−m}, and we let r(x) = p_{new}(x).

In the other case, p_{new}(x) has degree at most n but larger than the degree of s, and we use the induction hypothesis to write

\[p_{new}(x) = s(x)q_{new}(x) + r(x), \]

and we let

\[q(x) = \frac{a}{b}x^{n+1−m} + q_{new}(x). \]

2 a) We want to show that \(f(x) = \sqrt{x} \) is continuous at \(x = 1 \). For \(x > 1 \), we use the inequality

\[1 ≤ \sqrt{x} ≤ 1 + \frac{x − 1}{2}. \]

We see this just by squaring both sides. For \(0 < x < 1 \), we use the inequality

\[1 ≥ \sqrt{x} ≥ x. \]

Now for any \(\epsilon > 0 \), we need to pick a \(\delta \) so that \(|x - 1| < \delta \) implies that \(|\sqrt{x} - 1| < \epsilon \). We just pick \(\delta \) to be the minimum of \(\epsilon \) and 1, and apply the inequalities.

2b) Observe that \(\sqrt{3 + \frac{1}{n}} = \sqrt{3} + \sqrt{1 + \frac{1}{3n}} \).

Now note that the sequence \(1 + \frac{1}{3n} \) converges to 1. Since the function \(\sqrt{x} \) is continuous at 1, we then have that \(\sqrt{1 + \frac{1}{3n}} \) converges to \(\sqrt{1} \) which is 1. Therefore \(\sqrt{3 + \frac{1}{n}} \) converges to \(\sqrt{3} \). Now we use the fact that any convergent sequence is a Cauchy sequence.
3 a) Observe first that \(f(x) = x^2 - 20x + 101 \). Thus for \(x \geq 6 \), we have \(f(x) < x^2 \).

\[
\sum_{n=6}^{\infty} \frac{1}{f(n)} > \sum_{n=6}^{\infty} \frac{1}{n},
\]

so that the series does not converge absolutely.

Next observe that for \(x > 10 \), the function \(f(x) \) is increasing, since it has positive derivative. Then

\[
\sum_{n=11}^{\infty} \frac{-1^n}{f(n)},
\]

is convergent by the theorem on decreasing alternating series. Thus

\[
\sum_{n=1}^{\infty} \frac{-1^n}{f(n)},
\]

is convergent since convergence is determined by the tail. Since it is not absolutely convergent, it is conditionally convergent.

3 b) For any number \(k \), there are \(910^{k-1} \) numbers \(n \) with \(l(n) = k \) and each is smaller than \(10^k \). Thus each of these groups contributes at least \(\frac{9}{10} \) to the sum. Since there are infinitely many, the sum diverges.

4 a) Observe that since \(f \) is continuous it achieves a maximum \(M \) with \(f(x_M) = M \) and a minimum \(m \) with \(f(x_m) = m \) on the interval \([0,1]\). (That is \(x_m \in [0,1] \) and \(x_M \in [0,1] \).) Note that

\[
m \leq A \leq M.
\]

If equality holds in either case, we are done since we can take the point where the maximum or minimum is achieved. Otherwise we apply the Intermediate value theorem to find a point between \(x_m \) and \(x_M \) where \(f \) takes the value \(A \).

b) Suppose there is a solution \(1 < c < 10 \) to

\[
c^4 - 1 = 5000c - 1.
\]

Let \(f(x) = x^4 \). Apply the Mean Value Theorem to \(f \) on the interval \([1,c]\). There is a point \(d \) on \((1,c)\), where

\[
f'(d) = 5000.
\]

However,

\[
f'(x) = 4x^3.
\]

Thus

\[
f(d) \leq 4000,
\]

3
for any $d \in [1, 10]$. We have reached a contradiction.

5 a) Use the continuity of f' to choose $\epsilon > 0$ so that $f'(x) > \frac{1}{2}$ when $|x| \leq \epsilon$. Then by the mean value theorem, f is increasing on $[-\epsilon, \epsilon]$.

b) First solution Let $f_j(x)$ be defined on $2^{-j} \leq x \leq 2^{1-j}$ as follows.

\[f_j(x) = x + b_j(x), \]

where $b_j(x) = -2(x - 2^{-j})$ for $2^{-j} \leq x \leq 2^{-j} + 2^{-2j}$ and $b_j(x) = 2(x - 2^{-j} - 2^{-2j}) - 2^{-2j}$ for $2^{-j} + 2^{-2j} < x \leq 2^{-j} + 2^{1-2j}$ and 0 elsewhere.

Now define $g(x) = f_j(x)$ when $2^{-j} \leq x \leq 2^{1-j}$ and $g(x) = -f_j(-x)$ when $-2^{1-j} \leq x \leq -2^{-j}$ whenever $j > 2$ and $g(x) = x$ elsewhere. Away from $x = 0$, we have that $g(x)$ is continuous since the functions b_j always vanish at the endpoints of the intervals.

We have the estimate $|b_j(x)| = O(2^{-2j})$ as $j \to \infty$. Thus

\[g(x) = x + O(x^2) = x + o(x). \]

Therefore $g'(0) = 1$. This implies that g is continuous at 0. Now take any $\epsilon > 0$. The interval $[-\epsilon, \epsilon]$ contains some interval $[2^{-j}, 2^{1-j}]$ on which g is not increasing.

Second solution

Let

\[g(x) = x + 10x^2 \sin\left(\frac{1}{x}\right). \]

Observe that $g(x) = x + o(x)$ and therefore $g'(0) = 1$. Elsewhere

\[g'(x) = 1 - 10 \cos\left(\frac{1}{x}\right). \]

Thus in any interval $[-\epsilon, \epsilon]$ there are points where the derivative of g is negative. Because the derivative is continuous at these points, we can find a subinterval where g is decreasing.