1.3.6 Either there exists \(n \) so that \(t_n(x) < t_n(y) \) or \(x = y \). If it is the latter, then since \(y \leq z \) and \(x \) is just the same as \(y \), we know that \(x \leq z \). Similarly, either there exists \(m \) with \(t_m(y) < t_m(z) \) or \(y = z \). If it is the latter, since we already know \(x \leq y \), and \(y \) is just the same as \(z \), we know that \(x \leq z \). Thus it suffices to consider the case with \(t_n(x) < t_n(y) \) and \(t_m(y) < t_m(z) \). Note that when \(t_n(x) < t_n(y) \), it is also the case that \(t_N(x) < t_N(y) \) for any larger \(N \) and similarly for \(y \) and \(z \). Thus, we just pick \(N \) larger than both \(n \) and \(m \). We have \(t_N(x) < t_N(y) \) and \(t_N(y) < t_N(z) \). Since those two inequalities are between rational numbers, we may apply transitivity in the order of rational numbers to get \(t_N(x) < t_N(z) \).

1.3.7 Observe that \(x_n \) is the largest rational number which can be represented with denominator \(10^n \) which is not an upper bound for \(A \) and \(x_m \) is the largest rational number which can be represented with denominator \(10^m \). Note that since every fraction with denominator \(10^n \) is a fraction with denominator \(10^m \), it must be that \(x_n \leq x_m \). But \(t_n(x_m) \) is the largest fraction with denominator \(10^n \) which is less than or equal to \(x_m \) and since \(x_m \) is not an upper bound for \(A \), neither is \(t_n(x_m) \). Thus it must be that \(t_n(x_m) = x_n \). Each number \(x_n \) has an expansion

\[
x_n = a_m \ldots a_1.b_1 \ldots b_j \ldots b_N.
\]

Note that because \(t_n(x_m) = x_n \) when \(m > n \), no digit \(a_j \) or \(b_j \) depends on \(n \). Thus there is a real number

\[
x = a_m \ldots a_1.b_1 \ldots b_n \ldots
\]

We claim that \(x \) is an upper bound for \(A \). Note that \(x + 10^{-n} \) is an upper bound for \(A \) for every \(n \) since it is greater than \(x_n + 10^{-n} \). Apply the result of problem 1.4.2 below. Moreover, it is the least upper bound. Suppose not. Then there is an upper bound \(y \) with \(y < x \). This means there is some \(n \), where \(t_n(y) < t_n(x) \) which means that \(t_n(y) + 10^{-n} \) is an upper bound for \(A \) and so is \(x_n \) which is at least as large. This contradicts the definition of \(x_n \).

1.4.2 Suppose \(x < y + \epsilon \) for every \(\epsilon > 0 \). There is an infinite sequence of positions \(n_j \) so that the last digit of \(t_{n_j}(y) \) is not 9. [Otherwise, \(x \) would be a terminating decimal and its \(t_n \)'s would terminate for \(n \) sufficiently large]. Pick \(\epsilon = 10^{-n_j} \). Then for any \(m < n_j \), we have \(t_m(y + 10^{-n_j}) = t_m(y) \). Suppose there is some \(m \) for which \(t_m(y) < t_m(x) \). Then by picking \(n_j > m \) we get a contradiction. Thus either, \(t_m(y) = t_m(x) \) for every \(m \) in which case we have \(x = y \) or there is some \(m \) for which \(t_m(x) < t_m(y) \). Thus we have shown \(x \leq y \).

1.4.3 First, let us show that \((\sqrt{x})^2 \leq x \). Suppose not. Then \((\sqrt{x})^2 > x \). Observe that

\[
(\sqrt{x} - \frac{1}{n})^2 = (\sqrt{x})^2 - \frac{2\sqrt{x}}{n} + \frac{1}{n^2}.
\]
By choosing n so large that $(\sqrt{x})^2 - \frac{2\sqrt{x}}{n}$ is still greater than x, we see that \sqrt{x} is not the least upper bound. Now let us show that $(\sqrt{x})^2 \geq x$. Suppose not. Then there is some $\epsilon > 0$ so that there are no squares of real numbers between $x - \epsilon$ and x. We will contradict this by showing that for every n and every positive real x, there is a square between $(1 + \frac{1}{n})^{-2}x$ and x. Consider, the two sided sequence of numbers $a_m(n) = (1 + \frac{1}{n})^{2m}$ where m runs over all the integers both positive and negative. By the well ordering principle, there is a largest m so that $a_m(n) < x$. Hence $a_m(n) < x \leq a_{m+1}(x)$. But $a_m(x)$ and $a_{m+1}(x)$ are squares of real numbers which differ by a factor of $(1 + \frac{1}{n})^2$.

1.4.5 Observe that

$$ (1 + \frac{1}{n})^{\frac{1}{4}} \leq 1 + \frac{1}{4n}, $$

since the first two terms of the binomial expansion of $(1 + \frac{1}{n})^4$ are $1 + \frac{1}{n}$. Thus

$$ |(1 + \frac{1}{n})^{\frac{1}{4}} - 1| \leq \frac{1}{4n}. $$

Choosing $N(\epsilon) = \frac{1}{4\epsilon}$, we see that when $n > N(\epsilon)$,

$$ |(1 + \frac{1}{n})^{\frac{1}{4}} - 1| < \epsilon. $$