Math 108b Problem set 1 due: Thursday January 14th, 2016 4:00 P.M

1. Let U be a bounded open set in \mathbb{R}^n. Show there is a constant C_n depending only on n, so that U is the union of a countable collection Q of nonoverlapping closed cubes, with the property that for each $Q \in Q$, we have $l(Q) > \frac{d(Q)}{C_n}$, with $l(Q)$ the sidelength of Q and $d(Q)$, the distance between Q and the complement of U.

2. Let f be a nonnegative continuous function on an interval I in \mathbb{R}^n. Let $\lambda > 0$ be a real number. Show that there is a countable family of nonoverlapping cubes $\{Q_j\}$ with the properties that
\[
\sum_j |Q_j| \leq \frac{(R) \int_I f}{\lambda},
\]
for any $x \in I$ but in the complement of $\cup_j Q_j$, one has that $f(x) \leq \lambda$, and for any Q_j, one has
\[
\frac{1}{|Q_j|} (R) \int_{Q_j \cap I} f \leq 2^n \lambda.
\]
(Hint: Consider the set of dyadic cubes Q on which $\frac{1}{|Q|} (R) \int_{Q \cap I} f$ is more than λ. Which cubes should you pick to be the Q_j’s?)

3. Let f be a bounded function on \mathbb{R}^n and I an interval. Suppose that for every $\epsilon > 0$, there is a partition P of I so that
\[
U_P(f) - L_P(f) < \epsilon,
\]
where $U_P(f)$ and $L_P(f)$ are respectively the upper and lower Riemann sums with respect to the partition. Show that f is Riemann integrable on I.

4. Let f be a bounded function on \mathbb{R}^n. Define
\[
D_f(x) = \limsup_{y \to x} f(y) - \liminf_{y \to x} f(y).
\]
Show that f is continuous at x if and only if $D_f(x) = 0$.

5. Let f be a bounded function on \mathbb{R}^n and $D_f(x)$ be as above. Let $\epsilon > 0$ be a real number. Show that the set $\{x : D_f(x) \geq \epsilon\}$ is closed.