Math 110c Problem Set 2 Due April 28 4:00 P.M.

1. Let \(1 < p_0, p_1, q_0, q_1 < \infty \). Suppose that \(p_0 \leq q_0 \) and \(p_1 \leq q_1 \). Let \(0 < \theta < 1 \) and let
\[
\frac{1}{p} = \frac{\theta}{p_0} + \frac{1-\theta}{p_1},
\]
and
\[
\frac{1}{q} = \frac{\theta}{q_0} + \frac{1-\theta}{q_1}.
\]
Let \(T \) be a sublinear operator on \(L^{p_0} + L^{p_1} \) which is weak type \((p_0, q_0)\) and weak type \((p_1, q_1)\). Show that \(T \) is strong type \((p, q)\).

2. Let \(E \subset \mathbb{R}^n \) be a bounded Lebesgue measurable set of finite measure. Let \(Q \) be a collection of cubes in \(\mathbb{R}^n \) of bounded sidelength which covers \(E \). Show that there is a countable subcollection \(\{Q_j\} \) of \(Q \) which is pairwise disjoint and so that \(\{5Q_j\} \) covers \(E \). (Here, for any cube \(Q \), we define \(5Q \) to be the cube having the same center as \(Q \) and 5 times the sidelength.) Hint: Take \(Q_1 \) to be a cube at least half as long as the largest in \(Q \). Then remove from \(Q \) all cubes which intersect \(Q_1 \).

3. Use problem 2 to give a proof of the weak type \((1,1)\) boundedness of \(M' \), the centered cubical maximal function on \(\mathbb{R}^n \).

4. Let \(f \) be a real valued function on \([0, 1]\) whose derivative exists and is continuous at every point of \([0, 1]\). Then the graph of \(f \)
\[
G = \{(x, f(x)) : x \in [0, 1]\}
\]
is a rectifiable curve. Suppose that the length of \(G \) is equal to \(M \). Let \(K > 0 \) be a real number. Show that there is a measurable set \(E \subset [0, 1] \) with
\[
|E| \leq \frac{2M}{K},
\]
so that for any \(x, y \in [0, 1] \), with neither \(x \) nor \(y \) in \(E \), we have the estimate:
\[
|f(x) - f(y)| \leq K|x - y|.
\]
Hint: Apply the weak type \((1,1)\) bound on the 1-dimensional Hardy Littlewood maximal operator given in section 2.4 of Duoandikoetxea.

5. Let \(E \subset [0, 1] \) be a measurable set with \(|E| = \epsilon > 0 \). Let
\[
f(x) = \chi_E(x).
\]
Define the minimal function
\[
(m_1 f)(x) = \inf_{r < 1} \frac{1}{r} \int_{I_r(x)} |f(x)| \, dx,
\]
where $I_r(x)$ is the interval centered around x with length r. (This differs from the Hardy Littlewood maximal function in that the sup becomes an inf and the intervals are always chosen with length less than 1.) Define

$$E_{bad} = \{x \in E : M_1 f(x) < \frac{e}{100}\}.$$

Show that

$$|E_{bad}| \leq \frac{e}{10}.$$

(In other words most points of E are good.) Hint: Cover E_{bad} by intervals in whose five-fold product, the set E is sparse. Then use the idea of problem 2.