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Chapter 1

Induction and the real numbers

♦ 1.1 Induction

Math 1a is a somewhat unusual course. It is a proof-based treatment of Cal-
culus, for all of you who have already demonstrated a strong grounding in
Calculus at the high school level. You may have heard complaints about the
course from the upperclassmen. How much truth is in their complaints? Is
Math 1a useless for all applied work? Are formal proofs just a voodoo in which
mathematicians engage which has no impact on “the right answers.” Mathe-
maticians usually defend a course like Math 1a in a philosophical vein. We are
teaching you how to think and the ability to think precisely and rigorously is
valuable in whatever field one pursues. There is some truth in this idea, but
one must be humble in its application and admit that the value of being able
to think does depend somewhat on what one is thinking about. You will be
learning to think about analysis, the theoretical underpinning of the Calculus.
Is that worth thinking about?

A fair description of the way I hope most of you already understand Cal-
culus is that you are familiar with some of the theorems of the Calculus and
you know some ways of applying them to practical problems. Why then study
their proofs? Different answers are possible. If your interest is in applying
Calculus to the real world, the proofs of the theorems have surprisingly much
to say about the matter. As a scientist or an engineer, usually data in the real
world comes to you with limited measurement accuracy, not as real numbers,
but as numbers given to a few decimal places with implicit error intervals.
Nevertheless, studying the abstraction of the real numbers as we shall do in
the next lecture, tells us what we know reliably about the way in which these
errors propagate. (Indeed all of analysis concerns the estimation of errors.)
Another subtler reason for the study of theory, is that there is more to Calcu-
lus than strictly the statements of the theorems. The same ideas from Calculus
can be recycled in slightly unfamiliar settings, and if one doesn’t understand
the theory, one won’t recognize them. We will start to see this even today, in
discussing the natural numbers, and it will be a recurring theme in the course.

For the purposes of this course, the natural numbers are the positive inte-
gers. We denote by N, the set of natural numbers.

N = {1,2, . . . ,n, . . . }.

1
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Here on the right side of the equation, the braces indicate that what is being
denoted is a set (a collection of objects.) Inside the braces, we write what
objects are in the set. The . . . indicate that we are too lazy to write out all
of the objects (there are after all infinitely many) and mean that we expect
you to guess based on the examples we’ve put in (1,2,n) what the rest of the
objects are. An informal description of the natural numbers is that they are
all the numbers you can get to by counting, starting at 1.

Most of you have been studying the natural numbers for at least the last
13 years of your life, based on some variant of the informal description. In-
deed, most of what you have learned about the natural numbers during your
schooling has not been lies. Mathematicians can be expected to be unsatisfied
with such descriptions, however, and to fetishize the process of writing down a
system of axioms describing all the properties of the natural numbers. There
is such a system, called the Peano axioms, but we will dispense with listing
them except for the last which details an important method of proof involving
the natural numbers, that we will use freely.

The principle of
induction

Let {P (n)} be a sequence of statements running over the natural numbers.
(The fact that we denote the n dependence of the statement P (n) indicates
that it is a member of a sequence.) Suppose that P (1) is true and suppose
that if P (n) is true, it follows that P (n+ 1) is true. Then P (n) is true for all
natural numbers n.

In case this statement of the principle of induction is too abstract, we will
give a number of examples in this lecture, indicating how it can be used. We
begin by saying however, that the principle of induction is very closely related
to the informal description of the natural numbers, namely that all natural
numbers can be reached from 1 by counting. We give an informal proof of the
informal description by induction. Don’t take this too seriously if you prefer
that all your terms be defined.

Example 1 Prove the informal description of the natural numbers

Proof Let P (n) be the statement “n can be reached from 1 by counting.”

Clearly 1 can be reached from 1 by counting. So P (1) is true. Suppose P (n)
is true. Then n can be reached from 1 by counting. To reach n + 1 from n
by counting, just do whatever you did to reach n by counting and then say
“n + 1”. Thus P (n) implies P (n + 1). Thus the principle of induction says
that P (n) is true for all n. Thus we know that every natural number n can
be reached from 1 by counting.
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The most important statement that we will prove in this lecture using
induction is the principle of well ordering. We will use well ordering when
understanding the real number system. Instead of setting up the real numbers
axiomatically, we will describe them as they have always been described to
you, as infinite decimal expansions. We will use the well ordering principle
to obtain an important completeness property of the reals: the least upper
bound property.

Well ordering
principle

Every nonempty set of natural numbers has a smallest element.

Proof of
Well ordering
principle

We will prove this by proving the contrapositive: any set A of natural numbers
without a smallest element is empty. Here’s the proof: Let A be a set of
natural numbers without a smallest element. Let P (n) be the statement:
every natural number less than or equal to n is not an element of A. Clearly
P (1) is true, because if 1 were an element of A, it would be the smallest
element. Suppose P (n) is true. Then in if n + 1 were an element of A, it
would be the smallest. So we have shown that P (n) implies P (n+ 1). Thus
by induction all P (n) are true so that no natural number is in A. Thus A is
empty.

What is the value of a proof. Often a proof consists of an algorithm that
one could implement as a programmer. Suppose we’re presented with a set of
natural numbers and a way of testing whether each natural number belongs to
the set. To find the smallest element, we count through the natural numbers,
checking each one in turn to see if it belongs to the set. If the set is nonempty,
we are guaranteed that this algorithm will terminate. That is the practical
meaning of the above proof.

A common example to demonstrate proof by induction is the study of
formulas for calculating sums of finite series. An example with a rich history
is

S1(n) = 1 + 2 + 3 + · · ·+ n =
n∑
j=1

j.

(Here we wrote the sum first with . . . , assuming you knew what I meant
(the sum of the first n natural numbers) and then wrote it in summation
notation which is somewhat more precise.) Legend has it that when the great
mathematician Gauss was in grade school, his teacher asked the whole class
to compute S1(100), hoping to take a coffee break. Before the teacher left
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the room, Gauss yelled out 5050. How did he do it? He first wrote the sum
forwards,

1 + 2 + · · ·+ 100.

then backwards
100 + 99 + 98 + · · ·+ 1.

Then he added the two sums vertically getting 101 in each column. Thus,
twice the sum is 10100. So the sum is 5050.

Applying Gauss’s idea to general n, we get

S1(n) =
n(n+ 1)

2
=

(
n+ 1

2

)
.

A common example of a proof by induction is to prove this formula for
S1(n). We dutifully check that

(
1+1
2

)
= 1, verifying the formula for n = 1. We

assume that
(
n+1
2

)
is the sum of the first n natural numbers. Then we do a

little algebra to verify that
(
n+2
2

)
−
(
n+1
2

)
= n+ 1 concluding that

(
n+2
2

)
is the

sum of the first n+1 natural numbers. We have thus shown by induction that
the formula is true for all n.

Gauss’ proof seems like a lot more fun. It tells us the answer, finding
the formula for the sum. The induction proof seems just like mumbo jumbo
certifying the formula after we already know what it is.

Before leaving Gauss’ proof, let us at least examine how it generalizes to
sums of squares. Let us consider

S2(n) = 1 + 4 + · · ·+ n2 =
n∑
j=1

j2.

In order to calculate this sum, a la Gauss, it helps to have a geometric notion
of the number j2. It is in fact the number of pairs of natural numbers less
than or equal to j. In set theoretic notation

j2 = #{(l,m); l,m ∈ N,l,m ≤ j}.

Thus we can write S2(n) as the number of elements of a set of triples. Basically
we use the third component of the triple to write down which term of the sum
the ordered triple belongs to.

S2(n) = #{(j,l,m) : j,l,m ∈ N,l,m ≤ j,j ≤ n}.

Thus the number we seek, S2(n) is the number of triples of natural numbers
less than or equal to n, so that the first component is greater than or equal to
the last two components. Gauss’ trick generalizes to the following observation.
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For any ordered triple, one of the components is at least as big as the other 2.
This suggests we should compare 3 copies of S2(n) to n3 which is the number
of triples of natural numbers less than or equal to n. But we have to be careful,
we are counting triples where there are two components larger than the third
twice and we are counting triple where all three components are equal three
times.

Now observe that the number of triples of natural numbers less than or
equal to n with all components equal, formally

#{(j,j,j) : j ∈ N,j ≤ n}

is just equal to n, the number of choices for j. It is also easy to count triples
that have the first two components large and the third smaller. We observe
that

#{(j,j,l) : j,l ∈ N,j ≤ n,l ≤ j} = S1(n).

We get this because for each j there are j choices of l, so we are summing
the first n numbers. Then like Gauss we observe that each triple with two
equal components at least as the third, has the third component somewhere.
Combining all these observations we can conclude that

n3 = 3S2(n)− 3S1(n) + n.

(Basically the first term correctly counts triples with all different components.
The first term double counts triples with two equal components and one un-
equal but the second term subtracts one copy of each of these. The first term
triple counts triples with all components the same, but the second term also
triple counts them, so we have to add n to correctly account for all triples.)
Since we already know the formula for S1(n), we can solve for S2(n) and a
little algebra gives us the famous formula,

S2(n) =
n(2n+ 1)(n+ 1)

6
,

which you may have already seen before.

As you can imagine, the argument generalizes to the sum of kth powers.

Sk(n) =
n∑
j=1

jk.

Keeping track of k + 1-tuples with some entries the same is tricky, but the
highest order term in the formula is easy to guess. Gauss’s trick is that k+ 1-
tuples with a single largest component have that component in one of k + 1
places. So what we get is that

Sk(n) =
1

k + 1
nk+1 + lower order terms.
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You guys know some calculus so this should be familiar to you as one of the
most basic facts in calculus. It encodes that the indefinite integral of xk is
1

k+1
xk+1. That’s the same factor of 1

k+1
in both places. So what’s actually

happening is that Gauss’ trick gives you a new (and perhaps unfamiliar) way
of proving this fundamental fact. What is the way you’re used to deriving it?
Basically you work through the fundamental theorem of calculus, you know
how to take derivatives and you know you have to guess a function whose
derivative is xk. (Ask yourself: how are these different proofs related?)

How does induction fit in? Let me ask an even more general question. Pick
some function f acting on the natural numbers. Define the sum

Sf (n) =
n∑
j=1

f(j).

Now, we can only calculate this by induction if we can guess an answer. Let’s
consider a guess F (n) for this sum. What has to be true for induction to
confirm that indeed Sf (n) = F (n). First we have to check that Sf (1) =
f(1) = F (1). Otherwise, the formula will already be wrong at n = 1. Then
we have to check that

F (n+ 1)− F (n) = Sf (n+ 1)− Sf (n) = f(n+ 1),

concluding that the formula being correct at n implies that the formula is
correct at n+1. If you stare at this for a moment, you’ll see that this is in direct
analogy to the fundamental theorem of calculus. The difference F (n+1)−F (n)
plays the role of the derivative of F . The sum plays the role of the integral
of f , to calculate the sum, you have to guess the antiderivative. Induction
here plays the role of the calculus you already know and the unfun guess is a
process you’re familiar with.

To sum up: we’ve learned today about proofs by induction. We used
induction to prove the well ordering principle. In calculating finite sums,
induction plays the same role as the fundamental theorem of calculus. I hope
I’m also starting to convince you that proofs have meaning and that we can
learn surprising and interesting things by examining their meaning. If you
starting taking todays lecture overly seriously, you might conclude that the
calculus you know doesn’t need the real numbers in order to operate. It mostly
consists of algebraic processes that work on the natural numbers as well. That
isn’t what this course is about, however. Next time, we’ll begin studying the
real numbers and much of the focus of this course will be on what is special
about them.
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Exercises for Section 1.1

1. Let p(x) be a polynomial of degree n with integer
coefficients. That is

p(x) = anx
n + an−1x

n−1 + · · ·+ a0,

where the coefficients a0, . . . ,an are integers and
where the leading coefficient an is nonzero. Let b
be an integer. Then show that there is a polyno-
mial q(x) of degree n − 1 with integer coefficients
and an integer r so that

p(x) = (x− b)q(x) + r.

[In other words, you are asked to show that you can
divide the polynomial p(x) by the polynomial (x−b)
and obtain an integer remainder.] (Hint: Use induc-
tion on n. To carry out the induction step, see that
you can eliminate the leading term, and then use
the induction hypothesis to divide a polynomial of
degree n− 1.)

2. Use Gauss’ trick (as in the notes for lecture 1) to
find a formula for the sum of the first n fourth pow-
ers. To verify your calculation, prove by induction
that this formula is correct.

3. Let Sk(n) denote the sum of the first n kth powers
as in the notes for lecture 1. Prove by induction
that Sk(n) is a polynomial (whose coefficients are
rational numbers) of degree k + 1 in n. (Hint: You
should prove this by induction on k. You should use
as your induction hypothesis that Sj(n) is a polyno-
mial of degree j+1 for all j smaller than k. [This is
sometimes called strong induction.] The last page
of the notes for lecture 1 give you a good guess for
what the leading term of Sk(n) should be. Express
the rest of it as a combination of Sj(n)’s for smaller
j.)

4. Prove the principle of strong induction from the
principle of induction. That is let Q(n) be a se-
quence of statements indexed by the natural num-
bers. Suppose that Q(1) is true. Moreover suppose
that the first n statements Q(1),Q(2), . . . ,Q(n) to-
gether imply Q(n + 1). Then Q(n) is true for all
natural numbers n. (Hint: Define statements P (n)
to which you can apply the principle of induction.)

5. As in the text, define the binomial coefficient(
k
2

)
= k(k−1)

2 and the binomial coefficient
(
k
3

)
=

k(k−1)(k−2)
6 . These represent respectively the num-

ber of ways of choosing two natural numbers from
the first k and the number of ways of choosing three
natural numbers from the first k. Find a formula for
the sum

∑n
k=1

(
k
2

)
. Check your formula using induc-

tion. (Hint: Observe that a choice of three elements
from the first k can be broken into two parts. First
you choose the smallest of the three and then you
choose the other two. Compare this description to
the sum.)

6. Prove the identity
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
. (Hint: write

both terms on the right hand side with the common
denominator k!(n − k)!.) Use the identity you just
proved to prove by induction the identity

n∑
j=0

(
n

j

)
= 2n.

7. Prove by induction on k that the sum

Sk(n) =

n∑
j=1

jk,

is a polynomial of degree k + 1 with leading term
1
k+1n

k+1. (Hint: Observe by telescoping that

1

k + 1
nk+1 =

n∑
j=1

1

k + 1
(jk+1 − (j − 1)k+1).

Use the induction hypothesis to control the error
terms.)
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♦ 1.2 Induction for derivatives of polynomials

One of the central facts from a typical course in high school calculus is that
the derivative f ′(x) of the function f(x) = xk is given by

f ′(x) = kxk−1.

For us, it seems premature to be talking about this. We have not yet defined
limits or derivatives, which we’d like to understand for a considerably more
general class of functions than polynomials. But today, we’re going to do
something a bit odd. We will restrict our attention to polynomials and we will
the high school formula as the definition of the derivative. And then, we will
use induction to discover a number of fundamental facts about polynomials.
This serves different purposes in the course. It gives a rich set of problems on
which we can bring induction to bear and it allows us to emphasize certain
facts about polynomials which will play an important role later in the course.

First, we should define a polynomial. I will for the moment restrict the
coefficients of my polynomials to be rational numbers although this restriction
is not essential. We’re just trying to stay in the spirit of the course. We con-
sider rational numbers to be simple objects which we understand, but shortly
we will undertake rather exacting work to make sense of what real numbers
are. After we have done this, there will be no reason to restrict to polynomials
with rational coefficients.

polynomial of de-
gree k

Let a0,a1, . . . ,ak be rational numbers and x be a variable. Then an expression
of the form

a0 + a1x+ · · ·+ akx
k

will be called a polynomial (of degree k).

At this moment, we won’t consider polynomials as being functions at all.
They are merely expressions that look like functions. The ingredients to
make a polynomial are its coefficients, which in the definition we have labeled
a0,a1, . . . ,ak and its variable which we label x. To identify and work with a
polynomial, it will be important to be clear on which are the coefficients and
which is the variable. Always ask yourself in this lecture, when we present a
polynomial what is the variable. Some of the fancy footwork which will follow
will require careful choices of the variable.

derivative of poly-
nomial

Let p(x) = a0 + a1x+ · · ·+ akx
k be a polynomial. We define its derivative

p′(x) = a1 + 2a2x+ · · ·+ kakx
k−1.
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All we have done here is to take the high school formula as a definition. But
when we do this, we have no idea whether our definition is natural or makes
any sense. We don’t know if the derivative follows nice rules. To be able to
make good use of our definition, it would be nice to establish the product rule
and the chain rule. Doing this is a little tedious. We will do it here in special
cases and leave the general case as an exercise. In order for any of this to make
sense, we should define the sums, products and compositions of polynomials.

sums, products,
and composition of
polynomialsl

Let p(x) = a0+a1x+· · ·+akxk be a polynomial and q(x) = b0+b1x+· · ·+blxl
be polynomials. The sum p(x) + q(x) is the polynomial whose jth coefficient
cj is given by aj + bj. Here we consider the coefficients aj and bj to be zero,
when j is larger than the degree of p or q respectively. Then p(x)q(x) is the
polynomial whose jth coefficient cj is given by

cj =

j∑
m=0

ambj−m.

(This formula just combines all terms in the expansion of the product of the
two polynomials which contain an xj.) The composition p(q(x)) is given by

p(q(x)) = a0 + a1q(x) + · · ·+ ak(q(x))k.

(Here the meaning of the powers of q comes from the previous definition of
multiplication of polynomials.

Proposition(product
rule for monomials)

Let p(x) = xk and q(x) = xl, then with

r(x) = p(x)q(x),

we have that
r′(x) = p(x)q′(x) + p′(x)q(x).

Proof of the prod-
uct rule for mono-
mials

The polynomial r(x) is of course xk+l. By definition we have

r′(x) = (k + l)xk+l−1 = lxk+l−1 + kxk+l−1 = p(x)q′(x) + p′(x)q(x).

We’ll leave the proof of the product rule for polynomials in the general case
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as an exercise. This might seem much harder, but it is actually just a matter
of breaking up the product as a sum of products of individual terms. For the
remainder of the lecture, we’ll accept the product rule as known:

Theorem(product
rule for polynomi-
als)

Let p(x) and q(x) be polynomials and let r(x) = p(x)q(x) be their product
then

r′(x) = p(x)q′(x) + p′(x)q(x).

Now, we will establish the chain rule in the case where the first polynomial
is a monomial.

Proposition(chain
rule for monomials)

Let q(x) be a polynomial. (You were expecting me to say that p(x) is also a
polynomial, but here p(x) will be xn.) Let r(x) = (q(x))n. Then

r′(x) = n(q(x))n−1q′(x).

Proof of the chain
rule for monomials

This is clearly a job for induction. When n = 1, we are just differentiating
q(x) and we are getting q′(x) as the derivative. So the base case checks out.
Now suppose we already know how to differentiate (q(x))n−1. (This is the
induction hypothesis.) Then, we observe that

r(x) = (q(x))n = q(x)(q(x))n−1.

We’ll just use the product rule to differentiate r(x) where the derivatives of
the factors use the base case and the induction hypothesis.

r′(x) = q′(x)q(x)n−1 + q(x)(n− 1)(q(x))n−2 = n(q(x))n−1q′(x).

Similarly, we can get the full chain rule for polynomials from this Proposi-
tion by using the definition of composition of polynomials to break any com-
position into a sum of compositions with individual powers. We’ll live this
as an exercise, but we won’t actually need more than the proposition for our
purposes.

A remark: this has been a really horrible way of proving the product rule
and chain rule. It only works for polynomials. And it makes the whole subject
appear as if its a kind of list of random identities. The moral is that the
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definition of the derivative and the proof of the rules of differentiation from
the definition are useful even if the only functions you will ever differentiate
are polynomials, because they make the subject more conceptual. We will
cover that in a great deal of detail later in the course.

Now that we know all about derivatives of polynomials, we can use this
information to derive other facts about polynomials, which are usually consid-
ered more basic. For instance:

Theorem(The bino-
mial theorem, sort
of)

Let x be a variable, y be a rational number, and n be a natural number.
Then

(x+ y)n =
n∑
j=0

(
n

j

)
xjyn−j.

Here we mean (
n

j

)
=

n!

(n− j)!j!
.

The hypotheses of our theorem should look a bit comical. Here we’re
treating x and y as if they aren’t symmetrical purely so that we can prove this
theorem with the machinery we’ve already developed. We could fix this of
course. (How?) It might involve slightly more tedious definitions. I consider
the binomial theorem to be entirely high school material. If you see a proof of
it in high school, usually it’s a discussion of how you expand out the product
(x + y)n. The binomial coefficient

(
n
j

)
has a meaning. It counts the number

of ways of choosing j positions from n. The j positions we’re choosing are the
positions in which we have an x. What I just sketched is in some sense the
right conceptual proof. Now, you’ll see a completely different proof.
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Proof of the Bino-
mial theorem

First

(x+ y)n =
n∑
j=0

bj,nx
jyn−j,

where bj,n are some numbers. (Why?) Our job is to show that bj,n =
(
n
j

)
.

We will do this by differentiating both sides of the equation j times (in the
variable x, of course). When we differentiate the right hand side j times, the
constant term is

j!bj,ny
n−j.

When we differentiate the left hand side j times using the chain rule, we get

n!

(n− j)!
(x+ y)n−j.

The constant term is
n!

(n− j)!
yn−j.

Therefore

j!bj,n =
n!

(n− j)!
,

or

bj,n =
n!

(n− j)!j!
=

(
n

j

)
.

Taylor expansions for functions are going to be a recurring theme through-
out this course. Today, we’re going to see that all polynomials are equal to
their Taylor expansion about each point. Roughly this is the result from high
school algebra which says that polynomials can be expanded about any point.
I’m not sure how much this is emphasized in high schools. We’ll definitely have
cause to use it later in the course. For instance, when we develop methods
of numerical integration, it will be useful to approximate the function we’re
integrating by a different polynomial in each of a number of intervals. When
we do this, it will make computations simpler to expand the polynomial about
the midpoint of each interval.

Theorem(Taylor’s
theorem for polyno-
mials)

Let p(x) = a0 + a1x + · · · + akx
k be a polynomial of degree k. Let y be a

rational number. Then

p(x) = p(y) + p′(y)(x− y) +
p′′(y)

2
(x− y)2 + · · ·+ p(k)(y)

k!
(x− y)k.
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Proof of Taylor’s
theorem for polyno-
mials

This is again a job for induction. When the degree k = 0, the polynomial is
constant and p(y) = a0 for all y. Thus the base case is true. Now we assume
the induction hypothesis, that the theorem is true for polynomials of degree
k − 1. Note that the polynomial

q(x) = p(x)− ak(x− y)k,

is a polynomial of degree k−1 by the binomial theorem. Thus by the induction
hypothesis

q(x) = p(y) + p′(y)(x− y) +
p′′(y)

2
(x− y)2 + · · ·+ p(k−1)(y)

k!
(x− y)k−1.

This is because all the derivatives of (x− y)k up to the k− 1st vanish at y so
evaluating the derivatives of q at y is the same as evaluating the derivatives
of p. Now simply observe that since the kth derivative of p is k!ak, that the

last term ak(x− y)k is exactly p(k)(y)
k!

(x− y)k.
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Exercises for Section 1.2

1. Complete the proof of the product rule for differ-
entiation of polynomials given the product rule for
differentiation of monomials. (Hint: Expand the
product.)

2. Prove the chain rule for differentiation of polyno-
mials: If r(x) = p(q(x)) with p and q polynomials,
then

r′(x) = p′(q(x))q′(x).

Hint: Use the case that was done for you of r(x) =
(q(x))n, and expand p(q(x)) according to the terms
of p.

3. To do this problem, feel free to use anything you
know about derivatives of functions. Prove the fol-
lowing identity for k an odd integer:

dk+1

dxk+1
[(1 + x2)

k
2 ] =

((1)(3) . . . (k))2

(1 + x2)
k+2
2

.

Hint: Try induction on k.

4. Prove the generating rule for Pascal’s triangle. That
is, show for any natural numbers 0 < k < n that the
formula (

n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

Hint: Put both terms of the left hand side under
a common denominator. Aside: One interpretation
of this result is that when you choose k items from
n+ 1, either you choose the last one or you don’t.

5. Use the previous problem to give a proof of the Bi-
nomial theorem by induction. Hint: To prove the
inductive step, use that (x+y)n+1 = (x+y)(x+y)n,
expand out the first factor and use the induction hy-
pothesis on the second.

6. Setting j = k − 1, rewrite the generating rule for
Pascal’s triangle as(

n

j

)
=

(
n+ 1

j + 1

)
−
(

n

j + 1

)
.

Use this equation to prove by induction a formula
for

m∑
n=1

(
n

j

)
.

Hint: It’s a telescoping sum.

7. Use the previous problem to derive a formula for the
sum of the first m fourth powers,

m∑
n=1

n4.

Hint:
(
n
4

)
is a degree 4 polynomial in n. Write n4

in terms of
(
n
4

)
,
(
n
3

)
,
(
n
2

)
, and

(
n
1

)
.
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♦ 1.3 The real numbers

The purpose of this lecture is for us to develop the real number system. This
might seem like a very strange thing for us to be doing. It must seem to you
that you have been studying real numbers most of your life. However, some
introspection is likely to reveal that not everything you have been told about
the real numbers is entirely believable. (As an example, a recent 7th grade
textbook explains that to add and multiply rational numbers, you should follow
a set of rules you have been given. To add and multiply reals, you should plug
them into your calculator.)

Because the real numbers will be the central focus of inquiry in this course,
we will take this moment to specify exactly what they are. The central tenet of
mathematics is that one must always tell the truth, and one can’t be sure that
one is doing this about real numbers, unless one is sure exactly what they are.
There is more than one possible approach to doing this. Most mathematicians’
treatment of this (see Apostol’s book, or Dinakar Ramakrishnan’s notes) focus
on what one expects to do with real numbers. One is given a set of axioms
to cover this. It should be possible to perform basic arithmetic on the reals
(the field axioms), there should be a way of comparing the size of two real
numbers (the total ordering axiom) and a lot of limits should exist (the least
upper bound property). After one has written down these axioms, one is a
good position to start proving theorems about the real numbers. But one
might be quite confused about what is going on? Are these really the same
real numbers I’ve always heard about? Are the real numbers the only set of
numbers satisfying these axioms? What are individual real numbers like? It is
possible with some work to proceed from these axioms to answer that question,
but the work is non-trivial.

We will take a slightly different approach. We will describe the real num-
bers in much the way they were described to you in grade school, as decimal
expansions. (Mathematicians tend not to like this because there are arbitrary
choices like the choice of the base ten.) Then because we’d like to use the real
numbers, we will check that they satisfy the axioms allowing us to order them,
take limits, and do arithmetic. It will turn out that doing arithmetic is the
hardest part. (There’s a reason you need a calculator!) While you have been
trained that one can do arithmetic in real numbers since long before you had
Calculus, in order to actually be able to perform any arithmetic operation on
general real numbers, you have to take limits.

Before we start, perhaps a few words are required about the usefulness
of this. You are right to be concerned. As scientists and engineers pursuing
practical objectives, you will not encounter any typical real number. Sure, you
might collect some data. But it will come to you as floating point numbers with
implicit error intervals. Why then should we study something so abstract, so
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idealized, dare I say it so unreal as the real numbers? The answer is that quite
happily, the processes which we use to draw conclusions about real numbers
and especially to study limits of them (the main subject of this course) are
exactly the same as those used to rigorously study floating point numbers with
error intervals. It might be wise to take this viewpoint about the whole course.
But this requires thinking differently than one is used to about what are the
main questions.

Now we begin formally. What is a real number?

The real numbers A real number is an expression of the form

±a1a2a3 . . . am.b1b2b3 . . . .

Here the ± represents a choice between plus and minus. The digit a1 is an
integer between 0 and 9 inclusive (unless m is different from 1 in which case
it is restricted to being between 1 and 9, since it is the leading digit.) All
other digits are integers between 0 and 9 inclusive. One detail is that some
real number have two such representations. Namely a terminating decimal

±a1a2 . . . am.b1b2 . . . bn000 . . . ,

where here bn is different from 0, is the same as

±a1a2 . . . am.b1b2 . . . (bn − 1)999 . . . ,

a decimal with repeating 9’s. (Note that the repeating 9’s could start to the
left of the decimal place just as well as to the right.) The set of real numbers,
we will invariably refer to as R.

Hopefully, we have now described the real numbers as you have seen them
since grade school. It is often pointed out that they can be visualized as
populating a line. You can do this by first marking of the integers at equal
distances on the line. Then the interval between any two consecutive integers
can be cut into ten equal subintervals. The value of the first digit after the
decimal describes which interval the real number lies in. One continues the
process, subdividing each of those ten intervals into ten equal subintervals and
so on.

When dealing with the real numbers in practice, we very often approximate
to a few decimal places. Strangely, there is no standard notation for this, so
we introduce some.
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truncation Given a real number

x = ±a1a2 . . . am.b1b2 . . . bnbn+1bn+2 . . . ,

we define tn(x), the truncation to n decimal places, as

tn(x) = ±a1a2 . . . am.b1b2 . . . bn.

In order for tn to be a well defined function on the reals, we must specify
how it acts on reals with two decimal representations (the case of repeating
zeroes and repeating nines). We specify that to apply tn, we always take
the representation with repeating zeroes. Thus given any real number, we
uniquely map it with tn to a terminating decimal, which we can also view as
a rational number with denominator 10n. We note that as n increases with
x fixed, the truncation tn(x) increases.

We are now ready to define inequalities among real numbers.

Greater than and
less than

Given two real numbers x and y, we say that x ≥ y if x = y or there is some
n for which tn(x) > tn(y). (Ask yourself why we need the inequality between
the truncations to be strict.)

When presented with a new definition, it is often valuable to think about
it in terms of algorithms. How do we check if the number x is greater than
or equal to the number y. If x is actually greater, then we’ll find out in a
finite number of steps as we find a decimal place n where the truncation of x
is actually bigger. If x and y are equal, we’ll never find out, because we have
to check all the truncations. While at first, this seems an unhappy state of
affairs, it actually agrees with our intution about approximations and error
intervals. If two approximations are far apart so that their error intervals are
disjoint, we can tell which one is bigger. Otherwise, we’re not sure. Already,
we see that in this way, that the real numbers which are an idealization, model
reality well.

We now state as a proposition, that any two real numbers can be ordered.

Proposition 1.2.1 Given two real numbers x and y, then x ≥ y or y ≥ x.
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Proof of Proposi-
tion 1.2.1

If for some n, we have tn(x) > tn(y) or tn(x) < tn(y), then we’re done. The
only case remaining is that tn(x) = tn(y) for all n. In this case, x and y have
the same decimal expansion and are therefore the same number. In this case,
both x ≥ y and y ≥ x hold.

Thus we have completed one third of our project for defining the real
numbers. They are ordered. Decimals are in fact quite helpful in the ordering
which is basically alphabetical. (A more technical term for this kind of ordering
is lexicographic.)

We are now prepared to establish the least upper bound property for the
real numbers.

Upper bounds and
least upper bounds

Given a set A of real numbers, we say that a real number x is an upper bound
for A if for every y ∈ A, we have that x ≥ y. We say that x is the least upper
bound for A if for every other upper bound z for A, we have that x ≤ z.

We are interested in least upper bounds as a kind of upper limit of the real
numbers in the set A. An upper bound might miss being in A by a great deal.
A least upper bound may be just outside of A.

Least upper bound
property

Any nonempty set of real numbers A which has a real upper bound, has a
least upper bound in the reals.
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Proof of least upper
bound property

We are given that A is nonempty. Let z be an element of it. We are given
that it has an upper bound y. Now we are going to find the least upper bound
x by constructing its decimal expansion. Since y is an upper bound, so is
a = tn(y) + 1

10n
. The number a is an upper bound which also has a decimal

expansion which terminates at the nth place. Moreover a > tn(z). In fact
10n(a− tn(z)) is a positive natural number. We let B be the set of all natural
numbers of the form 10n(c− tn(z)) with c an upper bound for A with decimal
expansion terminating at or before the nth place. This set B is a nonempty
set of natural numbers which serves as a proxy for the set of upper bounds
for A which terminate at n decimal places. To the set B, we may apply the
Well Ordering Principle which we proved in the first lecture. The set B has
a smallest element, b. Thus 10−nb+ tn(z) is the smallest upper bound for A
with an n-place decimal expansion. We define xn = 10−nb + tn(z) − 10−n.
Thus xn just misses being an upper bound. If after some finite n, all xm with
m > n are the same, we let x be this xm. Otherwise, we let x be the real
number so that tn(x) = xn. (We used the well ordering principle to construct
the decimal expansion for x. (Question for the reader: Why did we treat the
case of x with a terminating expansion separately. Hint: it was because of
our definition for tn.)

The above proof may be a little hard to digest. To understand it better,
let us consider an example. Often, it is touted that one of the virtues of the
real number system is that it contains

√
2. (You should be a little concerned

that we haven’t defined multiplication yet, but this example can be viewed as
motivation for the definition.) How do we see that the real numbers contain√

2? We find a least upper bound for all numbers whose square is less than 2.
We do this in the spirit of the above proof. First, we find the small number with
one decimal place whose square is more than 2. It is 1.5. We subtract .1 and
record 1.4. Then we find the smallest number with two decimal places whose
square is larger than 2. It is 1.42. We subtract .01 and record 1.41. Gradually,
we build up the decimal expansion for

√
2, which begins 1.414213562. Our

algorithm never terminates but we get an arbitrarily long decimal expansion
with a finite number of steps.

The least upper bound property, while it is easy to prove using the decimal
system, is a pretty sophisticated piece of mathematics. It is a rudimentary tool
for taking limits, something we don’t consider in school until we take Calculus.
Adding and multiplying, though, is one of the first things we think of doing
to real numbers. Perhaps we want a calculator to handle it but we imagine
that nothing fancier is going on than our usual algorithms for adding and
muliplying. Let’s consider how this works. Let’s say I want to add two typical
real numbers. I write out their decimal expansions one above the other. Then
I start at the right. Oops. The numbers have infinite decimal expansions, so
I can never get to the right. This problem is not easily waved away. Through
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the process of carrying, quite insignificant digits of the summands can affect
quite significant digits of the sum. In order to calculate, as a practical matter,
an arithmetic operation performed on two numbers, we have to take a limit.

Luckily, we have established the least upper bound property. We can use
it to define the arithmetic operations on the reals.

addition and multi-
plication

Let x and y be two nonnegative real numbers. We let A = {tn(x) + tn(y)} be
the set of sums of truncations of x and y. We let M = {tn(x)tn(y)} be the
set of products of truncations of x and y. Note that both sets have upper
bounds. (We can use tn(x) + tn(y) + 2

10n
as an upper bound for A (why?)

and (tn(x) + 1
10n

)(tn(y) + 1
10n

) as an upper bound for M . (Why?) Now we
apply the least upper bound property to see that A and M have least upper
bounds. We define x + y to be the least upper bound for A and xy to be
the least upper bound for M . We restricted to x and y positive, so that the
expressions tn(x) + tn(y) and tn(x)tn(y) are increasing in n so that the least
upper bounds are really what we want.

Since we have so far only defined addition and multiplication for positive
numbers, defining subtraction of positive numbers seems a high priority.

subtraction Again given x and y nonnegative real numbers. We define S = {tn(x) −
tn(y) − 1

10n
}. We subtracted 1

10n
from the nth element so that while we are

replacing x by an underestimate tn(x), we are replacing y by an overestimate
tn(y)+ 1

10n
and when we subtract, we have an underestimate for the difference.

We define x− y to be the least upper bound of S.

What about division?

division Let x and y be nonnegative real numbers. Let D = {z : x ≥ yz}. Thus D
consists of real numbers we can multiply by y to get less than x. These are
the underestimates of the quotient. We define x

y
to be the least upper bound

of D.

So how are we doing? We have defined the real numbers in a way that
we recognize them from grade school. We have shown that this set of real
numbers has an order, that it satisfies the least upper bound property and
that we may perform arithmetic operations. Mathematicians might still not be
entirely satisfied as these arithmetic operations still must be proven to satisfy
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the laws they should inherit from the rational numbers. This is not quite as
easy as it looks. For instance, let’s say we want to prove the distributive law.
Thus if x,y, and z are nonnegative real numbers, we would like to show that
{tn(x + y)tn(z)} has the same least upper bound as {tn(xz) + tn(yz)}. It is
true and it can be done. But to do it, it really helps to deal carefully with
something we have completely set aside thus far. It helps to have estimates on
how far away a truncated version of (x+ y)z actually is from the least upper
bound.

This gets at an objection that a practical person could have for the way
we’ve defined our operations thus far. Certainly, the least upper bounds exist.
But they are the output of an algorithm that never terminates. To actually
use real numbers as a stand in for approximations with error intervals, we need
to be able at each step of a never terminating algorithm to have control on
the error. Notice we did have that kind of control in the example with

√
2.

When we had n decimal places, we knew we were within 10−n of the answer.
In the next lecture, we will get at both the practical and theoretical versions
of this problem by introducing the definition of the limit. We will see that
understanding that a limit exists is more than knowing what the limit is. It
also involves estimating how fast the limit converges. In practical terms, this
means calculating an error interval around the limitand.

Exercises for Section 1.3

1. We defined the difference x− y of two real numbers
x and y in terms of differences between the decimal
truncations tn(x) and tn(y) of the real numbers. We
could instead have done the following. Define the set
Sx,y to be the set of rational numbers p− q so that
p < x and q > y. Show that for any real numbers
x and y, the set Sx,y is bounded above. Show that
the least upper bound of Sx,y is x− y.

2. The purpose of this problem is to show that when
considering the sum x+y of two real numbers x and
y, if we are only interested in know tn(x + y), the
truncation of the sum up to n places past the deci-
mal, we may need information about x and y arbi-
trarily far into their decimal expansion. Let us make
this precise. Fix a natural number n. Now choose
another, possibly much larger natural number m.
Show that you can find real numbers x1,x2,y1, and
y2 with the properties that

tm(x1) = tm(x2),

tm(y1) = tm(y2),

but
tn(x1 + y1) 6= tn(x2 + y2).

3. The purpose of this problem is to show that when
considering the product xy of two real numbers x
and y, if we are only interested in knowing tn(xy),
the truncation of the sum up to n places past the
decimal, we may need information about x and y
arbitrarily far into their decimal expansion. Let us
make this precise. Fix a natural number n. Now
choose another, possibly much larger natural num-
ber m. Show that you can find positive real numbers
x1,x2,y1, and y2 with the properties that

tm(x1) = tm(x2),

tm(y1) = tm(y2),

but
tn(x1y1) 6= tn(x2y2).

Hint: If the product is really close to a fraction with
denominator 10n, very small changes in the factors
can get you on either side of it.
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4. Let x be a positive real number with a repeating
decimal expansion. This means that if

x = amam−1 . . . a1.b1b2 . . . bm . . . ,

there is some natural number N and some natu-
ral number j so that when k ≥ N , we always have
bk+j = bk. We call j the period of repetition. So,
for example, if x = 1

7 = .142857142857 . . . then we
have N = 1 and j = 6. Show that any x with a
repeating decimal expansion is a rational number.
That is, show that it is the quotient of two integers.
(Hint: Compare 10jx with x. [But remember that
to do this problem correctly, you have to use the
definition of division.])

5. Let z and w be rational numbers having denomina-
tor 10n (not necessarily in lowest terms). Consider
all possible real x with tn(x) = z and all possible
real y with tn(y) = w. What are all possible values
of tn(x+ y) in terms of z and w?

6. Let x,y, and z be real numbers. Suppose x ≤ y
and y ≤ z. Show that x ≤ z. Hint: Use the defi-
nition of ≤, of course. You are allowed to use that
the statement is true when x,y, and z are rational.
Your proof may break into cases because there are
two ways for the definition to be satisfied.

7. The purpose of this problem is to check a detail in
the proof of the least upper bound property. Let A
be a nonempty set of real numbers which is bounded
above. Suppose that A does not have a terminat-
ing decimal expansion as its least upper bound. Let
xn be the largest decimal which terminates at the
nth place and is not an upper bound for A. (This
agrees with the notation in the proof of the Least
Upper Bound property above.) Show that when
n and m are natural numbers with n < m, then
tn(xm) = xn. Conclude that there is a real number
x with tn(x) = xn. Show that x is an upper bound
for A. Conclude that x is the least upper bound.
Hint: The first part is true without the hypothe-
sis that A does not have a terminating least upper
bound. You have to use this hypothesis for the sec-
ond part, however. You can specify the decimal ex-
pansion of x, but for it to have the desired property,
it must be that the decimal expansion you specify
does not have repeating nines. To prove that x is
the least upper bound, use proof by contradiction.
Suppose that y is a strictly smaller upper bound.
Then there exists n with tn(y) < tn(x). Reach a
contradiction.
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♦ 1.4 Limits

In the previous section, we used the least upper bound property of the real
numbers to define the basic arithmetic operations of addition and multiplica-
tion. In effect, this involved finding sequences which converged to the sum
and product. In the current lecture, we will make the notion of convergence
to a limit by a sequence more flexible and more precise. In general, a sequence
of real numbers is a set of real numbers {an} which is indexed by the natural
numbers. That is each element of the sequence an is associated to a particular
natural number n. We will refer to an as the nth element of the sequence.

Example 1 A sequence converging to a product

Here goes Let x and y be positive real numbers. Let tn(x) and tn(y) be as

defined in Lecture 2, the truncations of x and y to their decimal expansions
up to n places. Consider the sequence {an} given by

an = tn(x)tn(y).

The number an represents the approximation to the product xy obtained by
neglecting all contributions coming from after the nth decimal place. The
sequence an is increasing meaning that if n > m then an ≥ am.

Example 2 A sequence converging to 1 whose least upper bound is not 1

Here goes Consider the sequence {bn} given by

bn = 1 + (−2)−n.

The sequence {bn} is neither increasing nor decreasing since the odd elements
of the sequence are less than one while the even ones are greater than one.

As a proxy for taking a limit of the sequence in Example 1, when we studied
it in lecture 2, we took the least upper bound. But this only worked because
the sequence was increasing. In example 2, the least upper bound is 5

4
since we

have written 0 out of the natural numbers. The greatest lower bound is 1
2
. But

the limit should be 1 since the sequence oscillates ever closer to 1 as n increases.
In what follows, we will write down a definition of convergence to limits under
which both sequences converge. (This should not be too surprising.) Indeed,
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since you have already had Calculus, you probably have a good sense about
which sequences converge. Nevertheless, you should pay careful attention to
the definition of convergence, because though it is technical, it contains within
it a way of quantifying not just whether sequences converge but how fast. This
is information of great practical importance.

Sequence
converging
to a limit

We say that the sequence {an} converges to the limit L if for every real
number ε > 0 there is a natural number N so that |an − L| < ε whenever
n > N . We sometimes denote L by

lim
n−→∞

an.

Example 3 The limit of the sequence in the second example

Here goes Let {bn} be as before. We will show that the sequence {bn}

converges to the limit 1. We observe that |bn − 1| = 2−n. To complete our
proof, we must find for each real number ε > 0, a natural number N so that
when n > N , we have that 2−n < ε. Since the error 2−n decreases as n
increases, it is enough to ensure that 2−N < ε. We can do this by taking
N > log2

1
ε
. A note for sticklers: if we want that to be completely rigorous,

maybe we have to verify that log2 is defined for all real numbers which we
haven’t done yet. However, it is quite easy to see that for any ε > 0, there is
an m so that 10−m < ε. This is readily done since ε being nonzero and positive
has a nonzero digit in its decimal expansion and we can choose m to be the
place of that digit. Then we can use an inequality like 2−4m = 16−m < 10−m.

All you have who have studied proofs, for instance in the online course Math
0, are probably under the impression that proofs are a bunch of verbiage used
to certify some trivial fact that we already know. They have to be written in
grammatical complete sentences and follow basic rules of logic. All of this can
be said to be true about proofs that limits exist. But there is one additional
element that you have to supply in order to prove a limit exists. You have to
find a function N(ε). (Since the number N depends on the number ε.) What
does this function mean? Here ε is a small number. It is the error one is willing
to tolerate between a term in the sequence and the limit of the sequence. Then
N(ε) represents how far we need to go in the sequence until we are certain that
the terms in the sequence will approximate the limit to our tolerance. This can
be very much a practical question. For instance in the first example, the terms
in the sequence are approximations to the product xy which can be calculated
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in a finite number of steps. Recall that 7th grade textbooks insist that real
numbers be multiplied by calculators which seems ridiculous since calculators
can only show numbers up to some accuracy ε (which used to be 10−8.) In
order for the calculator to comply with the wishes of the 7th grade textbook
it needs to know N(10−8) so that it will know how far in the sequence it has
to go to get an answer with appropriate accuracy.

Thus the function N(ε) is really important. It is strange that it is so
easy for you to think that proofs that limits exist only answer questions you
already know the answer to. This is because you all have superb intuition
as to whether limits exist. But why does the question always have to be
“does the limit exist?” Couldn’t it equally well be, “What is a function N(ε)
which certifies that the limit exists?” Probably, it is because of deep anti-
mathematical biases which exist in society. After all, the first question has a
unique yes or no answer. For the second question, the answer is a function
and it is not unique. In fact, given a function that works, any larger function
also works. Of course, it can also be said that answers to the second question,
even if correct, do not have equal value. It is better for the calculator to get
as small a function as it can that it can guarantee works.

You will be required to prove limits exist in this course. Because you’ve
had the opportunity to take Math 0 and are intelligent human beings, I won’t
spend any time instructing you in how to write grammatical sentences or
how to reason logically. But a really legitimate question for you to be asking
yourselves is “How do I find a function N(ε)?” The most obvious thing to say
is that you should be able to estimate the error between the Nth term of the
sequence and the limit. If this error is decreasing, you have already found the
inverse function for N(ε) and just have to invert. (This is what happened in
the third example: the function log2(

1
ε
) is the inverse of the function 2−n.) If

the errors aren’t always decreasing, you may have to get an upper bound on
all later errors too.

The question still remains how do we find these upper bounds. Therein lies
the artistry of the subject. Because we are estimating the difference between
a limit and a nearby element of a sequence, there is often a whiff of differen-
tial calculus about the process. This may seem ironic since we have not yet
established any of the theorems of differential calculus and this is one of our
goals for the course. Nevertheless, your skills at finding derivatives, properly
applied, may prove quite useful.

Example 4 The limit of the sequence in the first example.

Here goes We would like to show that for x and y positive real num-

bers, the sequence {tn(x)tn(y)} converges to the product xy which is de-
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fined as the least upper bound of the sequence. Thus we need to estimate
|xy − tn(x)tn(y)| = xy − tn(x)tn(y). We observe that

tn(x)tn(y) ≤ xy ≤ (tn(x) +
1

10n
)(tn(y) +

1

10n
),

since tn(x) + 1
10n

has a larger nth place than any truncation of x and similarly
for y. Now subtracting tn(x)tn(y) from the inequality, we get

0 ≤ xy − tn(x)tn(y) ≤ (tn(x) +
1

10n
)(tn(y) +

1

10n
)− tn(x)tn(y).

Note that the right hand side looks a lot like the expressions one gets from
the definition of the derivative, where 1

10n
plays the role of h. Not surprisingly

then, when we simplify, what we get is reminiscent of the product rule

0 ≤ xy − tn(x)tn(y) ≤ 1

10n
(tn(x) + tn(y) +

1

10n
) ≤ 1

10n
(x+ y + 1).

Notice we are free to use the distributive law because we are only applying it
to rational numbers. The last step is a little wasteful, but we have done it to
have a function that is readily invertible. Clearly 1

10n
(x+ y + 1) is decreasing

as n increases. Thus if we just solve for N in

ε =
1

10N
(x+ y + 1),

we find the function N(ε). It is easy to see that N(ε) = log10
x+y+1

ε
works. To

summarize the logic, when n > N(ε) then

|xy − tn(x)tn(y)| ≤ 1

10n
(x+ y + 1) ≤ ε.

Thus we have shown that tn(x)tn(y) converges to the limit xy.

A clever reader might think that the hard work of the example above is
really unnecessary. Shouldn’t we know just from the fact that the sequence is
increasing that it must converge to its least upper bound? This is in fact the
case.

Theorem:
least upper bounds
are limits

Let {an} be an increasing sequence of real numbers which is bounded above.
Let L be the least upper bound of the sequence. Then the sequence converges
to the limit L.
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Proof Proof We will prove Theorem 1 by contradiction. We suppose that the
sequence {an} does not converge to L. This means there is some real number
ε > 0 for which there is no N , so that when n > N , we are guaranteed that
L− ε ≤ an ≤ L. This means there are arbitrarily large n so that an < L− ε.
But since an is an increasing sequence, this means that all an < L−ε, since we
can always find a later term in the sequence, larger than an which is smaller
than L − ε. We have reached a contradiction since this means that L − ε is
an upper bound for the sequence so L could not have been the least upper
bound.

A direct application of the Theorem shows that the limit of the first ex-
ample converges. Is the clever reader right that the fourth example is un-
necessary? Not necessarily. A practical reader should object that the proof
through the Theorem is entirely unquantitative. It doesn’t give us an explicit
expression for N(ε) and so it doesn’t help the calculator one iota. It provides
no guarantee of when the approximation is close to the limit. Mathematicians
are known for looking for elegant proofs, where elegant is usually taken to mean
short. In this sense, the proof through Theorem 1 is elegant. That doesn’t
necessarily make it better. Sometimes if you’re concerned about more than
what you’re proving, it might be worthwhile to have a longer proof, because
it might give you more information.

Example 5 Do the reals satisfy the distributive law

Yes they do Let x,y,z be positive real numbers. We would like to show

that (x+ y)z = xz + yz. Precisely, this means that we want to show that

lim
n−→∞

tn(x+ y)tn(z) = lim
n−→∞

tn(x)tn(z) + lim
n−→∞

tn(y)tn(z).

If L1 = (x + y)z, L2 = xz, and L3 = yz, then these are the limits in the
equality above. From the definition of the limit, we can find an N1 so that for
n > N the following three inequalities hold:

|L1 − tn(x+ y)tn(z)| ≤ ε

4
.

|L2 − tn(x)tn(z)| ≤ ε

4
,

and

|L3 − tn(y)tn(z)| ≤ ε

4
.

Basically, we find an N for each inequality and take N1 to be the largest of
the three. To get N1 explicitly, we can follow the previous example.
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Next we observe that

(tn(x) + tn(y))tn(z) ≤ tn(x+ y)tn(z) ≤ (tn(x) + tn(y) +
2

10n
)tn(z),

since the right hand side is more than x+ y. Thus

(tn(x) + tn(y))tn(z) ≤ tn(x+ y)tn(z) ≤ (tn(x) + tn(y) +
2

10n
)tn(z),

from which we can conclude (again following the ideas of the previous example)
that there is N2 so that when n > N2 we have

|tn(x+ y)tn(z)− (tn(x) + tn(y))tn(z)| ≤ ε

4
.

Now take N to be the maximum of N1 and N2. We have shown that when
we go far enough in each sequence past N , the terms in limiting sequences to
L1,L2, and L3 are within ε

4
of the limits and that the difference between the

nth term in the sequence for L1 and the sum of the nth terms for L2 and L3

is at most ε
4
. Combining all the errors, we conclude that

|L1 − L2 − L3| ≤ ε.

Since ε is an arbitrary positive real number and absolute values are nonneg-
ative, we conclude that L1 − L2 − L3 = 0, which is what we were to show.

It is worth noting that when combined the errors, we were in effect applying
the triangle inequality

|a− c| ≤ |a− b|+ |b− c|

multiple times. This inequality holds for all reals a,b,c.

At this point, we are in a position to establish for the reals all arithmetic
identities that we have for the rationals in the spirit of the last example.
Basically we approximate any quantity we care about closely enough by ter-
minating decimal expansions and we can apply the identity for the rationals.
For this reason, we will not have much further need to refer to decimal ex-
pansions in the course. We have established what the real numbers are and
that they do what we expect of them. Moreover, we have seen how to use the
formal definition of the limit and what it means. Next time, we will discuss
additional criteria under which we are guaranteed that a limit exists.

Exercises for Section 1.4
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1. Use the definition of multiplication of real numbers
to show that multiplication of real numbers is as-
sociative. That is, show that for any real numbers
x,y,z, one has the identity

x(yz) = (xy)z.

2. Let x and y be real numbers. Suppose that for every
ε > 0, one has x < y + ε. Show that x ≤ y. Hint:
Compare the truncations of x and y.

3. Define the square root function on the positive real
numbers by letting

√
x be the least upper bound of

{y : y2 < x}, the set of reals whose square is less
than x. Prove using the definition of multiplication
that the product of

√
x with itself is x. Hint: It is

easy to see from definitions (but you have to do it)
that (

√
x)2 ≤ x. Use the previous exercise to show

also that (
√
x)2 ≥ x.

4. Prove using the definition of the limit of a sequence
that

lim
n−→∞

√
1 +

1

n
= 1.

Give an explicit expression for the function N(ε)

that you use. Hint: Compare
√

1 + 1
n with 1 + 1

2n .

5. For the purposes of this exercise, when x is a pos-
itive real number define (x)

1
4 to be the least upper

bound of {y > 0 : y4 < x}. Prove using the defini-
tion of the limit of a sequence that

lim
n−→∞

(1 +
1

n
)

1
4 = 1.

Give an explicit expression for the function N(ε)

that you use. Hint: Compare (1 + 1
n )

1
4 with 1 + 1

4n .
Use the definition of the fourth root to make this
comparison.



Chapter 2

Sequences and Series

♦ 2.1 Cauchy Sequences and the Bolzano Weierstrass and Squeeze theo-
rems

The purpose of this section is more modest than the previous ones. It is to
state certain conditions under which we are guaranteed that limits of sequences
converge.

Cauchy
sequence

We say that a sequence of real numbers {an} is a Cauchy sequence provided
that for every ε > 0, there is a natural number N so that when n,m ≥ N , we
have that |an − am| ≤ ε.

Example 1 Given a real number x, its sequence of truncations {tn(x)} is a Cauchy se-
quence.

Proof If n,m ≥ N , we have that |tn(x) − tm(x)| ≤ 10−N , since they share

at least the first N places of their decimal expansion. Given any real number
ε > 0, there is an N(ε) so that 10−N(ε) < ε. Thus we have shown that the
sequence {tn(x)} is a Cauchy sequence.

The above example was central in our construction of the real numbers.
We got the least upper bound property by associating to each sequence of
truncations, the real number x which is its limit. The class of Cauchy sequences
should be viewed as minor generalization of the example as the proof of the
following theorem will indicate.

Theorem 1 Every Cauchy sequence of real numbers converges to a limit.

30
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Proof of Theorem 1 Let {an} be a Cauchy sequence. For any j, there is a natural number Nj so
that whenever n,m ≥ Nj, we have that |an − am| ≤ 2−j. We now consider
the sequence {bj} given by

bj = aNj − 2−j.

Notice that for every n larger than Nj, we have that an > bj. Thus each bj
serves as a lower bound for elements of the Cauchy sequence {an} occuring
later than Nj. Each element of the sequence {bj} is bounded above by b1 +1,
for the same reason. Thus the sequence {bj} has a least upper bound which
we denote by L. We will show that L is the limit of the sequence {an}.
Suppose that n > Nj. Then

|an − L| < 2−j + |an − bj| = 2−j + an − bj ≤ 3(2−j).

For every ε > 0 there is j(ε) so that 21−j < ε and we simply take N(ε) to be
Nj(ε).

The idea of the proof of Theorem 1 is that we recover the limit of the
Cauchy sequence by taking a related least upper bound. So we can think
of the process of finding the limit of the Cauchy sequence as specifying the
decimal expansion of the limit, one digit at a time, as this how the least upper
bound property worked.

The converse of Theorem 1 is also true.

Theorem 2 Let {an} be a sequence of real numbers converging to a linit L. Then the
sequence {an} is a Cauchy sequence.

Proof of Theorem 2 Since {an} converges to L, for every ε > 0, there is an N > 0 so that when
j > N , we have

|aj − L| ≤
ε

2
.

(The reason we can get ε
2

on the right hand side is that we put ε
2

in the role
of ε in the definition of the limit.) Now if j and k are both more than N ,
we have |aj − L| ≤ ε

2
and |ak − L| ≤ ε

2
. Combining these using the triangle

inequality, we get
|aj − ak| ≤ ε,

so that the sequence {aj} is a Cauchy sequence as desired.

Combining Theorems 1 and 2, we see that what we have learned is that
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Cauchy sequences of real numbers and convergent sequences of real numbers
are the same thing. But the advantage of the Cauchy criterion is that to check
whether a sequence is Cauchy, we don’t need to know the limit in advance.

Example 2 Consider the series (that is, infinite sum)

S =
∞∑
n=1

1

n2
.

Proof We may view this series as the limit of the sequence of partial sums

aj =

j∑
n=1

1

n2
.

We can show that the limit converges using Theorem 1 by showing that {aj}
is a Cauchy sequence. Observe that if j,k > N , we definitely have

|aj − ak| ≤
∞∑
n=N

1

n2
.

It may be difficult to get an exact expression for the sum on the right, but it
is easy to get an upper bound.

∞∑
n=N

1

n2
≤

∞∑
n=N

1

n(n− 1)
=

∞∑
n=N

1

n− 1
− 1

n
.

The reason we used the slightly wasteful inequality, replacing 1
n2 by 1

n2−n is
that now the sum on the right telescopes, and we know it is exactly equal to

1
N−1 . To sum up, we have shown that when j,k > N , we have

|aj − ak| ≤
1

N − 1
.

Since we can make the right hand side arbitrarily small by taking N sufficiently
large, we see that {aj} is a Cauchy sequence. This example gives an indication
of the power of the Cauchy criterion. You would not have found it easier to
prove that the limit exists if I had told you in advance that the series converges
to π2

6
.

Let {an} be a sequence of real numbers. Let {nk} be a strictly increasing
sequence of natural numbers. We say that {ank} is a subsequence of {an}.
We will now prove an important result which helps us discover convergent
sequences in the wild.
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Theorem 3
(Bolzano-
Weierstrass)

Let {an} be a bounded sequence of real numbers. (That is, suppose there
is a positive real number B, so that |aj| ≤ B for all j.) Then {an} has a
convergent subsequence.

Proof of
Bolzano-
Weierstrass theo-
rem

All the terms of the sequence live in the interval

I0 = [−B,B].

We cut I0 into two equal halves( which are [−B,0] and [0,B]). At least one
of these contains an infinite number of terms of the sequence. We choose a
half which contains infinitely many terms and we call it I1. Next, we cut I1
into two halves and choose one containing infinitely many terms, calling it
I2. We keep going. (At the jth step, we have Ij containing infinitely many
terms and we find a half, Ij+1 which also contains infinitely many terms.) We
define the subsequence {ajk} by letting ajk be the first term of the sequence
which follows aj1 , . . . ,ajk−1

and which is an element of Ij. We claim that {ajk}
is a Cauchy sequence. Let’s pick k,l > N . Then both ajk and ajl lie in the
interval IN which has length B

2N−1 . Thus

|ajk − ajl | ≤
B

2N−1
.

We can make the right hand side arbitrarily small by making N sufficiently
large. Thus we have shown that the subsequence is a Cauchy sequence and
hence convergent.

A question you might ask yourselves is: How is the proof of the Bolzano
Weierstrass theorem related to decimal expansions?

Our final topic for today’s lecture is the Squeeze theorem. It is a result
that allows us to show that limits converge by comparing them to limits that
we already know converge.

Theorem 4
Squeeze theorem

Given three sequences of real numbers {an}, {bn}, and {cn}. If we know that
{an} and {bn} both converge to the same limit L and we know that for each
n we have

an ≤ cn ≤ bn,

then the sequence {cn} also converges to the limit L.
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Proof of
Squeeze theorem

Fix ε > 0. There is N1 > 0 so that when n > N1, we have

|an − L| ≤ ε.

There is N2 > 0 so that when n > N2, we have

|bn − L| ≤ ε.

We pick N to be the larger of N1 and N2. For n > N , the two inequalities
above, we know that an,bn ∈ (L− ε,L+ ε). But by the inequality

an ≤ cn ≤ bn,

we know that cn ∈ [an,bn]. Combining the two facts, we see that

cn ∈ (L− ε,L+ ε),

so that
|cn − L| ≤ ε.

Thus the sequence {cn} converges to L as desired.

Example 3 Calculate
lim
n−→∞

(1 +
n

n+ 1
)

1
n .

Proof The limit above seems a little complicated so we invoke the squeeze

theorem. We observe that the inside of the parentheses is between 1 and 2.
(Actually it is getting very close to 2 as n gets large. Thus

1
1
n ≤ (1 +

n

n+ 1
)

1
n ≤ 2

1
n .

Thus we will know that

lim
n−→∞

(1 +
n

n+ 1
)

1
n = 1,

provided we can figure out that

lim
n−→∞

1
1
n = 1.

and
lim
n−→∞

2
1
n = 1.

The first limit is easy since every term of the sequence is 1. It seems to us that
the nth roots of two are getting closer to 1, but how do we prove it. Again, it
seems like a job for the squeeze theorem. Observe that

(1 +
1

n
)n ≥ 2,
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since 1 + 1 are the first two terms in the binomial expansion. Thus

2
1
n ≤ 1 +

1

n
.

We know that

lim
n−→∞

1
1
n = 1,

and perhaps we also know that

lim
n−→∞

1 +
1

n
= 1,

since 1
n

becomes arbitrarily small as n gets large. Thus by the squeeze theorem,
we know

lim
n−→∞

2
1
n = 1,

and hence

lim
n−→∞

(1 +
n

n+ 1
)

1
n = 1.

The above example is a reasonable illustration of how the squeeze theorem
is always used. We might begin with a very complicated limit, but as long as
we know the size of the terms concerned, we can compare, using inequalities
to a much simpler limit.

As of yet, we have not said anything about infinite limits.

infinite limit We say that a sequence {an} of positive real numbers converges to infinity if
for every M > 0, there is an N so that when n > N , we have an > M . Here
M takes the role of ε. It is measuring how close the sequence gets to infinity.
There is a version of the squeeze theorem we can use to show limits go to
infinity.

Theorem 5
infinite squeeze the-
orem

Let {an} be a sequence of positive real numbers going to infinity. Suppose
for every n, we have

bn ≥ an.

Then the sequence {bn} converges to infinity.
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Proof of the infinite
squeeze theorem

For every M , there exists N so that when n > N , we have an > M . But
since bn ≥ an, it is also true that bn > M . Thus {bn} goes to infinity.

Example 4 Show that
∞∑
n=1

1

n
=∞.

Proof We will prove this by comparing each reciprocal to the largest power

of two smaller than it. Thus

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · · > 1 +

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ . . . .

Combining like terms, we get

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · · > 1 +

1

2
+

1

2
+

1

2
+ . . . .

On the right hand side, we are summing an infinite number of 1
2
’s. Thus the

sum is infinite.

Something to think about: Often one shows that the harmonic series di-
verges by comparing it to the integral of 1

x
which is a logarithm. Are there

any logarithms hiding in the above example.

Exercises for Section 2.1

1. Let {an} and {bn} be two Cauchy sequences of real
numbers. Suppose that for every j, one has the in-
equality |aj − bj | ≤ 1

j . Show using the definition
of the limit of a sequence that the two sequences
converge to the same limit.

2. Let C be a subset of the real numbers consisting of
those real numbers x having the property that every
digit in the decimal expansion of x is 1,3,5, or 7. Let
{cn} be a sequence of elements of C so that |cj | < 1
for every natural number j. Show that there is a
subsequence of {cn} which converges to an element
of C.

3. Let x be a positive real number. Show that
{
√
tn(x)} is a Cauchy sequence. Show that the limit

is
√
x.

4. Use the squeeze theorem to calculate

lim
n−→∞

(1 +
1

n2
)n.

Hint: For the upper bound, expand using the bino-
mial theorem. Then use the inequality

(
n
j

)
≤ nj .

Finally use the identity:

1 +
1

n
+

1

n2
+ · · ·+ 1

nn
=

1− 1
nn+1

1− 1
n

.

5. Use the squeeze theorem to calculate

lim
n−→∞

n(

√
4 +

3

n
− 2).

Hint: Approximate the square root as a linear ex-
pression L in 1

n , so that the first two terms of the
binomial expansion for L2 are exactly 4 + 3

n . Use
L as an upper bound and then correct L by sub-
tracting a multiple of the square of 1

n to get a lower
bound.
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♦ 2.2 infinite series

In this section, we will restrict our attention to infinite series, which we will
view as special kinds of sequences. We will bring what we learned about
convergence of sequence to bear on infinite series.

Infinite series An infinite series is a formal sum of the form

S =
∞∑
n=1

an.

Here an are some given real numbers. We would like to have a notion of
convergence for series.

Convergence of infi-
nite series

We consider the partial sums:

Sn =
n∑

m=0

am.

These are finite sums of numbers. We say that S converges if limn−→∞ Sn
converges.

If we are given the partial sums Sn, we may recover the terms of the series
an by

an = Sn − Sn−1.

In section 1.1, we viewed this identity as a form of the fundamental theorem.
But, in any case, just as we may convert series to sequences, so we can convert
a sequence to a series. We can write

lim
n−→∞

bn =
∞∑
n=1

(bn − bn−1),

where we fix b0 to be zero. Every fact, we know about convergence of sequence
translates into a fact about convergence of series.

Theorem 1 The series
∑∞

n=1 an converges if and only if its tail
∑∞

n=M an converges. (Here
M is some particular natural number.)
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Proof of Theorem 1 This is basically just a reformulation of the Cauchy criterion for series. We
let Sj be the jth partial sum of the series

∑∞
n=1 an and we let

SMj =

j∑
n=M

an.

We note that the quantities SMj are the partial sums of the tail. Note that if
j,k > M then

SMj − SMk = Sj − Sk.

We know from last time that the tail converges if and only if the SMj ’s are
a Cauchy sequence and the original series converges if and only if Sj’s are a
Cauchy sequence, but restricting N from the definition of Cauchy sequence
to be greater than M , we see that this is the same thing.

Similarly, we can reformulate the Squeeze theorem as a criterion for con-
vergence of series.

Theorem 2 Let {an} and {bn} be two sequences of real numbers. Suppose that

0 ≤ an ≤ bn

for every natural number n. If
∑∞

n=1 bn converges then
∑∞

n=1 an converges,
and if

∑∞
n=1 an diverges then

∑∞
n=1 bn diverges.

Proof of Theorem 2 To get the second part, we apply Theorem 5 of lecture 4 to the partial sums.
To get the first part, we observe that the limit of the partial sums is their least
upper bound since they are an increasing sequence. Thus our assumption is
that the partial sums of the b’s have a least upper bound. In particular, since
the a’s are smaller, this implies that the partial sums of the a’s are bounded
above. Thus by the least upper bound property of the reals, they have a least
upper bound.

Absolute conver-
gence

A series
∑∞

n=1 an is said to be absolutely convergent if
∑∞

n=1 |an| converges.

Theorem 3 If
∑∞

n=1 an converges absolutely then it converges.
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Proof of Theorem 3 Since
∑∞

n=1 an is absolutely convergent, it must be that the partial sums of∑∞
n=1 |an| which we denote

Tn =
n∑
j=1

|aj|,

are a convergent sequence and therefore a Cauchy sequence. Now denoting
by Sn, the nth partial sum of the series

∑∞
n=1 an, we see that

|Sn − Sm| ≤ |Tn − Tm|.

Thus {Sn} is also a Cauchy sequence and hence converges.

A series
∑∞

n=1 an need not be absolutely convergent in order to converge.

conditional conver-
gence

If the series converges but is not absolutely convergent, we say that it is
conditionally convergent.

Example 1 Consider
∑∞

n=1(−1)n−1 1
n
.

Proof This sum converges conditionally. To see this, we first observe that

the sum does not converge absolutely. This is an application of Example 4 in
lecture 2.1. Next we combine the 2n− 1st and 2nth term of the sum to obtain

1
(2n−1)2n . The series

∑∞
n=1(−1)n−1 1

n
converges if and only if

∞∑
n=1

1

(2n− 1)(2n)

converges. We use Theorem 2 to prove the convergence by comparison with
Example 2 of lecture 4.

Example 1 is just one example of a large class of alternating series that
converges.

Theorem 4 Let {an} be a decreasing sequence of real numbers converging to 0. Then the
series

∞∑
n=1

(−1)n−1an

converges.
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Proof of Theorem 4 It is enough to show that the series

∞∑
n=1

(a2n−1 − a2n),

converges.
Observe that

a2n−1 − a2n ≤ a2n−1 − a2n+1.

But clearly
∞∑
n=1

a2n−1 − a2n+1 = a1,

since it telescopes.

An important example of an absolutely convergent series is the geometric
series.

Example 2 Let c and r < 1 be positive real numbers. Then

∞∑
j=0

crj =
c

1− r
.

Proof We can see this by calculating the partial sums,

Sn =
n∑
j=0

crj = c(
1− rn+1

1− r
).

This formula for Sn is most readily seen by induction. It clearly holds for n = 0
since the sum is just the 0th term 1. We observe that Sn−Sn−1 = c( r

n−rn+1

1−r ) =
crn, which is the nth term. Since r < 1, we have that rn+1 becomes arbitrarily
small as n grows large. Thus Sn converges to c

1−r .

We will use the geometric series (Example 2) together with the squeeze
theorem (Theorem 2) to devise some useful tests for absolute convergence of
series.
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Theorem 5 (The ra-
tio test)

Suppose an 6= 0 for any n sufficiently large. and suppose that

lim
n−→∞

|an+1

an
| = L.

If L < 1 then the series
∞∑
n=1

an,

converges absolutely. If L > 1 then the series diverges.

If the limit of the ratios does not exist or is equal to 1, then the ratio test
fails, and we can reach no conclusion from Theorem 5 about the convergence
of the series.

Proof of the Ratio
test

Suppose that 0 ≤ L < 1. Choosing ε < 1−L
2

, we see that there is N so that
for n ≥ N , we have

|an+1

an
| ≤ 1− ε.

From this, we see by induction that

|an| ≤ |aN |(1− ε)n−N ,

for each n ≥ N . Now, we apply theorem 1 to see that it suffices to show that
the tail of the series

∞∑
n=N

an,

converges absolutely. To see this, we apply theorem 2, comparing it with the
geometric series

∞∑
n=N

|aN |(1− ε)n−N ,

which by example 2 converges absolutely. If on the other hand, L > 1, we
may use the same idea to find N and ε so that |aN | 6= 0 and so that for
n > N , we have

|an| ≥ |aN |(1 + ε)n−N .

For such n, it is clear that the differences between consecutive partial sums
|Sn+1 − Sn| = |an| are growing. Hence the sequence of partial sums is not a
Cauchy sequence.
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Theorem 6( the nth
root test)

Suppose
lim
n−→∞

|an|
1
n = L.

Then if L < 1, the series
∑∞

n=0 an converges absolutely. If L > 1 then the
series diverges.

Proof of the nth
root test

We proceed just as for Theorem 5. We suppose L < 1 and pick ε < 1−L
2

.
Then we conclude that there exists N so that for n ≥ N we have

|an| ≤ (1− ε)n.

Thus, we may apply Theorem 2 to compare the tail of the series to the tail
of the geometric series

∞∑
n=N

(1− ε)n.

On the other hand, if L > 1, we see that terms of the series are growing
in absolute value and again we see that the partial sums are not a Cauchy
sequence.

The ratio and nth root tests can be used to show that series converge if
they do so faster than geometric series. We provide an example.

Example 3 The series
∞∑
n=1

n22−n,

converges.

Proof We apply the ratio test and calculating

lim
n−→∞

(n+ 1)22−1−n

n22−n
= lim

n−→∞

(n+ 1)2

2n2
=

1

2
.

One of the reasons that the nth root test is important is that we can use
it to understand the convergence properties of power series. This will be the
topic of our next section.

Exercises for Section 2.2
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1. Show using the infinite squeeze theorem that the
series

∞∑
n=2

1

n log2 n

diverges. Then show using the squeeze theorem that

∞∑
n=2

1

n(log2 n)2

converges.

2. Prove either that the following series converges or
diverges:

∞∑
n=1

n20162016n

n!
.

3. Prove that the following series converges:

∞∑
n=1

nn

(n!)3
.

Hint: Find a reasonably good lower bound for n! by
a power of n. Don’t try to look up the best power
of n that’s known. Just find a lower bound that you
can justify.

4. Prove that
∞∑
n=1

1

nr

converges when r > 1 and diverges when r < 1.
Hint: Break up the sum into dyadic pieces , that is
2j ≤ n ≤ 2j+1. Bound the sums of each piece above
when r > 1 and below when r < 1. Note: The func-
tion xr hasn’t actually been defined yet, but you
may use all its basic properties like xr = x(xr−1)
and that positive powers of numbers greater than 1
are greater than 1.

5. Prove that
∞∑
n=1

2
√
n−n

converges.

6. A 30 year fixed rate mortgate is a loan taken out
over a period of 360 months. The initial loan
amount is M . Each month, the borrower pays a
fixed payment p. We define a function f(j) where j
is the number of months that have passed. We let
f(0) = M and we let f(j) = (1 + r)f(j − 1) − p,
for 1 ≤ j ≤ 360, where r is the fixed monthly in-
terest rate. Further, we require that f(360) = 0.
Derive and prove a formulafor p in terms of M
and r in closed form. Hint: You’ll have to use
the formula for the sum of a finite geometric se-
ries which appears in the second line of Example
2. It helps to rearrange things so that you’re set-
ting equal the mortgage amount M with interest on
it compounded over thirty years and the stream of
monthly payments each compounded from the mo-
ment it is made. Aside: This is really how payments
on thirty year fixed mortgages are computed.
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♦ 2.3 power series

A very important class of series to study are the power series. They are
interesting in part because they represent functions and in part because they
encode their coefficients which are a sequence. At the end of this lecture, we
will see an application of power series for writing a formula for an interesting
sequence.

Power series A power series is an expression of the form

S(x) =
∞∑
j=0

ajx
j.

For the moment, the coefficients aj will be real numbers. The variable x
takes real values and for each distinct value of x, we get a different series S(x).
The first question we’ll be interested in is for what values of x does the series
S(x) converge.

Theorem 1 Let

S(x) =
∞∑
j=0

ajx
j.

Then there is a unique R ∈ [0,∞] so that S(x) converges absolutely when
|x| < R and so that S(x) diverges when |x| > R.

Radius of conver-
gence

The number R (possibly infinite) which Theorem 1 guarantees is called the
radius of convergence of the power series.

Often to prove a theorem, we break it down into simpler parts which we
call Lemmas. This is going to be one of those times.

Lemma 1 Let

S(x) =
∞∑
j=0

ajx
j.

Suppose that S(c) converges. Then S(x) converges absolutely for all x so
that |x| < |c|.
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Proof of Lemma 1 We note that since S(c) converges, it must be that the sequence of numbers
{|ajcj|} are bounded above. If not, there are arbitrarily late partial sums
of S(c) which differ by an arbitrarily large quantity, so that the series S(c)
does not converge. Let K be an upper bound for the sequence {|ajcj|}. Now
suppose |x| < |c|. We will show S(x) converges absolutely. Observe that we
have the inequality

|ajxj| ≤ K|(x
c

)|j.

Thus by Theorem 2 of Lecture 5, it suffice to show that the series

∞∑
j=0

K|(x
c

)|j

converges. But this is true since the series above is geometric and by assump-
tion |x

c
| < 1.

Now we are in a strong position to prove Theorem 1.

Proof of Theorem 1 We will prove theorem 1 by defining R. We let R be the least upper bound
of the set of |x| so that S(x) converge. If this set happens not to be bounded
above, we let R =∞. By the definition of R, it must be that for any x with
|x| > R, we have that S(x) diverges. (Otherwise R isn’t an upper bound.)
Now suppose that |x| < R. Then there is y with |y| > |x| so that S(y)
converges. (Otherwise, |x| is an upper bound.) Now, we just apply Lemma
1 to conclude that S(x) converges.

The above proof gives the radius of convergence R in terms of the set of
x where the series converges. We can however determine it in terms of the
coefficients of the series. We consider the sets

Ak = {|an|
1
n : n ≥ k}.

These are the sets of nth roots of nth coefficients in the tail of the series. Let
Tk be the least upper bound of Ak. The numbers Tk are a decreasing sequence
of positive numbers and have a limit unless they are all infinite. Let

T = lim
k−→∞

Tk.

Then T is a nonnegative real number or is infinite. It turns out that R = 1
T

.
You will be asked to show this on the homework, but it is a rather simple
application of the nth root test. This is the reason the nh root test is important
for understanding power series.
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One thing we haven’t discussed yet is the convergence of the power series
right at the radius of convergence. Basically, all outcomes are possible. Di-
rectly at the radius of convergence, we are in a setting where the nth root test
fails.

Example 1 Consider the following three series.

S1(x) =
∞∑
n=0

xn.

S2(x) =
∞∑
n=1

xn

n
.

S3(x) =
∞∑
n=1

xn

n2
.

Proof By the criterion above, it is rather easy to see that the radius of

convergence of each series is 1, since the nth roots of the coefficients converge
to 1. However the three series have rather different behaviors at the points
x = 1 and x = −1. We note that S1(x) diverges at both x = 1 and x = −1
since all of its terms there have absolute value 1. We note that S2(1) is the
harmonic series which diverges and we note that S2(−1) is the alternating ver-
sion of the harmonic series which we showed converges conditionally. We can
see that S3(1) and S3(−1) both converge absolutely since the can be compared
with the series

∞∑
n=1

1

n2
.

Since we are interested in studying power series as functions and we are ac-
customed to adding and multiplying functions, it will be important to us to un-
derstand that we can add and multiply absolutely convergent series termwise.
Once we have done this, we will see that we can do the same with power series
inside their radius of convergence.
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Theorem 2 Let S1 =
∑∞

n=0 an and S2 =
∑∞

n=0 bn be absolutely convergent series. Then

S1 + S2 =
∞∑
n=0

an + bn,

and letting

cm =
∑
i+j=m

aibj,

we have

S1S2 =
∞∑
n=0

cn.

It is worth noting that even the statement of the theorem for products
looks a little more complicated than for sums. The issue is that (in the case
of power series) products of partial sums are not exactly the partial sums of
the products.

Proof of Theorem 2 The proof of the statement about sums is essentially immediate since the
partial sums of the formula for sum are the sums of partial sums of the
individual series. So we need only check that the limit of a sum is the sum of
the limits, which we leave to the reader. For products, things are a little more
complicated. We observe that the sum of an absolutely convergent series is
the difference between the sum of the series of its positive terms and the sum
of the series of its negative terms and so we restrict our attention to the case
where all ai’s and all bi’s are nonnegative. We let S1,n be the nth partial sum
of S1 and S2,n be the nth partial sum of S2 and we let S3,n be the nth partial
sum of

∞∑
n=0

cn.

Then we notice that

S1,nS2,n ≤ S3,2n ≤ S1,2nS2,2n.

We obtain the desired conclusion using the Squeeze theorem.

In a few weeks, when we study Taylor’s theorem, we will establish power
series expressions for essentially all the functions that we know how to differ-
entiate. As it is, we already know power series expansions for a large class of
functions because of our familiarity with geometric series.
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Example 2
1

1− ax
=
∞∑
n=0

(ax)n,

whenever |ax| < 1.

Proof The equality expressed above is just a special case of the formula

for the sum of an infinite geometric series. However the right hand side is a
power series expression for the function on the left hand side. The radius of
convergence of the series is 1

|a| which is the distance from zero to the singularity
of the function.

In conjunction with Theorem 2, we can actually use this formula to obtain
the power series at zero of any rational function. Suppose

f(x) =
P (x)

Q(x)

is a rational function (that is P (x) and Q(x) are polynomials.) Suppose more-
over that the roots of Q(x) are distinct. Let us call them r1, . . . ,rm, then by
partial fractions decomposition

f(x) = S(x) +
A1

x− r1
+ · · ·+ Am

x− rm
,

where S(x) is a polynomial and the A’s are constants. Using geometric series,
we already have a series expansion for each term in this sum.

What happens if Q(x) does not have distinct roots. Then we need power
series expansions for 1

(x−r)2 ,
1

(x−r)3 , . . . . In a few weeks, we’ll see that an easy

way of getting them is by differentiating the series for 1
x−r . But as it is, we

can also get the series by taking 1
x−r to powers. For instance,

1

(1− ax)2
= (

∞∑
n=0

(ax)n)2 =
∞∑
n=0

(n+ 1)(ax)n.

Here what we have done is simply apply the multiplication part of Theorem
2. As long as we can count the number of terms in the product, we are now
in a position to obtain a series expansion for any rational function.

Example 3 The Fibonacci sequence

Proof
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As promised, we will now use the theory of power series to understand the
terms of an individual sequence. We now define the Fibonacci sequence. It is
defined by letting f0 = 1 and f1 = 1. Then for j ≥ 2, we let

fj = fj−1 + fj−2.

The above formula is called the recurrence relation for the Fibonacci sequence
and it lets us generate this sequence one term at a time:

f0 = 1,f1 = 1,f2 = 2,f3 = 3,f4 = 5,f5 = 8,f6 = 13,f7 = 21, . . .

The Fibonacci sequence is much loved by math geeks and has a long history.
It was first used by Fibonacci in the eighth century to model populations of
rabbits for reasons that are too upsetting to relate.

Nevertheless our present description of the sequence is disturbingly inex-
plicity. To get each term, we need first to have computed the previous two
terms. This situation is sufficiently alarming that the world’s bestselling Cal-
culus book gives the Fibonacci sequence as an example of a sequence whose
nth term cannot be described by a simple formula. Using power series, we are
now in a position to make a liar of that Calculus book.

We introduce the following power series

f(x) =
∞∑
n=0

fnx
n,

which has the Fibonacci sequence as its coefficients. We note that multiplying
f(x) by a power of x shifts the sequence. We consider the expression (1− x−
x2)f(x) and note that by the recurrence relation, all terms with x2 or higher
vanish. Computing the first two terms by hand, we see that

(1− x− x2)f(x) = 1,

or put differently

f(x) =
1

1− x− x2
.

Apply partial fractions, we conclude

f(x) =
− 1√

5

x+ 1+
√
5

2

+

1√
5

x+ 1−
√
5

2

.

Now applying the formula for sum of a geometric series and using the fact that

(
1 +
√

5

2
)(

1−
√

5

2
) = −1,

we see that

fn =
1√
5

(
1 +
√

5

2
)n − 1√

5
(
1−
√

5

2
)n.

What could be simpler than that?
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Exercises for Section 2.3

1. Show that
∞∑
n=1

nnxn

diverges for all x > 0.

2. Find the radius of convergence of

∞∑
n=1

√
n4nxn.

Justify your answer, of course.

3. Let {an} be a sequence satisfying an = 2an−1 +
3an−2 for n > 2 with a1 = 1 and a2 = 2. Following
Example 3 find a rational function representing the
power series

∞∑
n=1

anx
n.

What is the radius of convergence of this series?
Justify your answer. Hint: The sequence an is a
sum of two geometric sequences.

4. Let an be a sequence of real numbers bounded above
and below. For each n, let bn be the least upper
bound of

{ak : k > n}.

Prove that bn is a decreasing sequence. Define

lim sup an,

to be the greatest lower bound of bn. (That is,
lim sup an is the negative of the least upper bound
of {−bn}.) Prove there is a subsequence of {an}
which converges to lim sup an. Hint: This is just
going through the definition and finding lots of a’s
close to lim sup an.

5. With an and lim sup an as in the previous problem,
let L be the limit of some subsequence of an. Show
that L ≤ lim sup an. Hint: Compare L to the bn’s.

6. Let {an} be a positive sequence of real numbers.
Suppose that

L = lim sup a
1
n
n ,

is nonzero and finite. Show that 1
L is the radius of

convergence of the power series

∞∑
n=0

anx
n.

Hint: There are two parts to this problem. You
need an upper bound and a lower bound for the ra-
dius of convergence. To get the lower bound just
use the nth root test. To get the upper bound, use
the subsequence which converges to the lim sup.
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Continuity, Asymptotics, and
Derivatives

♦ 3.1 Continuity and Limits

In this section, we’ll be discussing limits of functions on the real line and for
this reason we have to modify our definition of limit. For the record:

Functions A function f from the reals to the reals is a set G of ordered pairs (x,y) so
that for any real number x, there is at most one y with (x,y) ∈ G. The set of
x for which there is a y with (x,y) ∈ G is called the domain of the function.
If x is in the domain, the real number y for which (x,y) ∈ G is called f(x).

Don’t panic! I don’t blame you if the above definition, beloved of math-
ematicians, is not how you usually think of functions. The set G is usually
referred to as the graph of the function. The condition that there is only one y
for each x is the vertical line test. However all of this is still a little drier than
the way we usually imagine functions. We like to think there is a formula,
a rule, which tells us how we compute f(x) given x. Certainly some of our
favorite functions arise in that way, but it is not the case that most functions
do, even granting some ambiguity in what we mean by a formula or a rule.
Nonetheless in this lecture, we will deal with functions at this level of general-
ity. One consolation might be that when you are out in nature collecting data
to determine a function, your data will come as points of the graph (or rather
approximations to them since in reality, we don’t see real numbers.)

Limits of functions If f is a function on the reals, possibly except for a, we say that

lim
x−→a

f(x) = L,

if for every ε > 0, there is δ > 0 so that if 0 < |x−a| < δ then |f(x)−L| < ε.

51
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The definition of the limit should by now look somewhat familiar. Because
we are looking at limits of a function instead of limits of a sequence, the
quantity N(ε) which measured how far in the sequence we had to go to get
close to the limit is replaced by the quantity δ(ε) which measures how close
we have to be to a for the function f to be close to its limit.

To get a handle on how a definition works, it helps to do some examples.

Example 1 Show that

lim
h−→0

(2 + h)2 − 4

h
= 4.

Proof Here the function f(h) = (2+h)2−4
h

is technically not defined at 0.

However at every other h, we see that the function is the same as 4+h. Hence
the problem is the same as showing

lim
h−→0

4 + h = 4.

Thus what we need to do is find a δ(ε) so that |4 + h − 4| < ε, when
|h| < δ(ε). Since |4 + h− 4| is the same as |h|, we just use δ(ε) = ε.

A lot of the limits we can take in elementary calculus work like Example
1. We rewrite the function whose limit we are taking on its domain in a way
that makes it easier for us to estimate the difference between the function and
its limit.

The rules that we had for taking limits of sequences still work for limits of
functions.

Squeeze Theorem
for Functions

Let f ,g,h be functions which are defined on the reals without the point a.
Suppose that everywhere we know that f(x) ≤ h(x) ≤ g(x) and suppose that

lim
x−→a

f(x) = lim
x−→a

g(x) = L.

Then
lim
x−→a

h(x) = L.

The proof basically repeats the proof of the squeeze theorem for sequences.
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Proof of the
Squeeze Theorem
for Functions

We can find a common function δ(ε) so that |x − a| < δ(ε) implies that
|f(x) − L| < ε and |g(x) − L| < ε. Then we observe that f(x) − L ≤
h(x)− L ≤ g(x)− L. Thus

|h(x)− L| ≤ max(|f(x)− L|,|g(x)− L|) < ε,

where the last inequality only holds when |x−a| < δ(ε). Thus we have shown

lim
x−→a

h(x) = L.

The notion of limit allows us to introduce the notion of a continuous func-
tion. We first write down a helpful Lemma

Helpful Lemma Let {xj} be a sequence of real numbers converging to a. Suppose that

lim
x−→a

f(x) = L,

then
lim
j−→∞

f(xj) = L.

Proof of Helpful
Lemma

We need to show that for every ε > 0, there is N(ε) so that if n > N(ε) then
|L − f(xj)| < ε. What we do know is that for every ε > 0 there is δ > 0 so
that if |x − a| < δ then |f(x) − L| < ε. Thus it would be enough to show
that there is N so that if j > N then |xj − a| < δ. This we know from the
convergence of the sequence to a, using δ in the role of ε.

Continuous func-
tion

A function f on the reals is continuous at a point a if

lim
x−→a

f(x) = f(a).

We say that f is continous on an interval [c,d] if it is continuous for every
a ∈ [c,d]

We shall now take some time to prove as theorems some of the basic prop-
erties of continuous functions that we tend to take for granted.
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Extreme Value The-
orem

Let f(x) be a function which is continuous on the interval [a,b]. Then f(x)
attains its maximum on this interval. More precisely if M = l.u.b.{f(x) : x ∈
[a,b]} then M exists and there is a point c ∈ [a,b] so that

f(c) = M.

Proof of Extreme
Value Theorem

The hardest part of proving this theorem is to show that the set {f(x) :
x ∈ [a,b]}, which is clearly nonempty, is bounded above. We prove this
by contradiction. Suppose not. Then for every natural number n, there is
xn ∈ [a,b] so that f(xn) > n. (Otherwise n is an upper bound.) Now we apply
the Bolzano-Weierstrass theorem. This tells us that there is a subsequence
xnj converging to some point z ∈ [a,b]. But by the definition of continuity

lim
j−→∞

f(xnj) = f(z) <∞,

which is impossible since by assumption f(xnj) > nj.

Now we know that M exists. Since M is the least upper bound, it is the case
than for every n, there is a point xn ∈ [a,b] so that

M − 1

10n
< f(xn) ≤M.

(Otherwise M − 1
10n

is also an upper bound and so M is not the least.)
Now applying the Bolzano-Weierstrass theorem again, we see that there is a
subsequence {xnj} converging to some point c ∈ [a,b]. By the definition of
continuity, we have that

lim
j−→∞

f(xnj) = f(c).

Thus we see that
f(c) = M.

The key ingredient in the proof of the Extreme value theorem was the
Bolzano Weierstrass theorem. It was there that we used seriously the impor-
tant hypothesis that the domain on which the function is continuous is a closed
interval.

We are now ready to prove the other most iconic property of continuous
functions:
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Intermediate Value
Theorem

Let f be a continuous function on the interval [a,b]. Suppose that f(a) <
L < f(b). Then there is some c ∈ [a,b] so that f(c) = L.

Proof of Intermedi-
ate Value Theorem

We will prove this theorem by contradiction. Suppose there is no value c
for which f(c) = L. We consider the midpoint of the interval a+b

2
. By

assumption, either f(a+b
2

) < L or f(a+b
2

) > L. If f(a+b
2

) < L, we define new
endpoints a1 = a+b

2
and b1 = b. If f(a+b

2
) > L, we define instead a1 = a and

b1 = a+b
2

. In either case, we have that the hypotheses of the theorem are
retained with a replaced by a1 and b replaced by b1. Moreover, we have that
each of the three numbers a1 − a, b− b1, and b1 − a1 is bounded by b−a

2
.

We keep repeating this process, shrinking the interval by a factor of two each
time. Thus we obtain sequences {al} and {bl} so that f(al) < L, so that
f(bl) > L and so that the three numbers al − al−1,bl−1 − bl, and al − bl are

all non-negative and bounded above by bl−1−al−1

2
= b−a

2l
.

Thus we have that {al} and {bl} are Cauchy sequences converging to the
same point c. Thus by the definition of continuity, the sequences {f(al)} and
{f(bl)} both converge to the same limit f(c). But since for all L, we have

f(al) < L < f(bl),

by the squeeze theorem, we have that f(c) = L. This is a contradiction.

Exercises for Section 3.1

1. We say that a function f is uniformly continuous
on an interval [c,d] if for every ε > 0 there exists
δ(ε) > 0 so that if x,y ∈ [c,d] with |x− y| < δ(ε), we
have |f(x)−f(y)| < ε. Note that this seems stronger
than the definition of continuity because δ(ε) does
not depend on the point of continuity. Show that
any function continuous on all of [c,d] is uniformly
continuous on [c,d]. Hint: By continuity, at each
point of the interval [c,d], there is a δ(ε) appropriate
for that point. If these numbers are bounded below
by something greater than 0, take the lower bound.
Otherwise, use the Bolzano Weierstrass theorem to
find a point of discontinuity, obtaining a contradic-
tion.
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♦ 3.2 Limit laws

Here is a useful result for evaluating limits (in this case of sequences.) The
same is true for limits of functions as you’ll see in the exercises.

Theorem Let {an} and {bn} be sequences. Suppose that

lim
n−→∞

an = L1,

and
lim
n−→∞

bn = L2.

Then
lim
n−→∞

an + bn = L1 + L2.

Moreover
lim
n−→∞

anbn = L1L2.
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Proof We begin by proving
lim
n−→∞

an + bn = L1 + L2.

We observe that there is N1 > 0 so that when n > N1, we have

|an − L1| <
ε

2
,

and that there is N2 > 0, so that when n > N2,

|bn − L2| <
ε

2
.

Thus letting N be the larger of N1 and N2, we get that when n > N ,

|an + bn − L1 − L2| ≤ |an − L1|+ |bn − L2| < ε.

To prove the same result for products is a bit more complicated. We calculate

|L1L2− anbn| ≤ |L1L2−L1bn|+ |L1bn− anbn| ≤ |L1||L2− bn|+ |bn||L1− an|.

We observe that since bn converges, it must be that bn is a bounded sequence
and we let M be the least upper bound of {|bn|}. Thus our estimate becomes

|L1L2 − anbn| ≤ |L1||L2 − bn|+M |L1 − an|.

Now we use the fact that {an} converges to L1 and {bn} to L2. There is N1

so that for n > N1, we have

|L1 − an| <
ε

2M
.

There is N2 so that for n > N2,

|L2 − bn| <
ε

2L1

.

Then
|L1L2 − anbn| < ε.
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Exercises for Section 3.2

1. Prove the limit laws for functions. That is, suppose
that

lim
x−→a

f(x) = L1,

and
lim
x−→a

g(x) = L2.

Show that

lim
x−→a

f(x) + g(x) = L1 + L2,

and
lim
x−→a

f(x)g(x) = L1L2.
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♦ 3.3 Derivatives

In this section, we’ll define the derivative of a function and describe its familiar
local theory.

Before doing this we’ll introduce a bit of notation, common in some applied
fields like the analysis of algorithms, but not often used when discussing single
variable calculus. We will do so, because it makes the proofs of the main rules
of differentiation, like the product rule and the chain, extremely transparent.

Little-oh and Big-
oh notation

We say that a function f(h) is o(h) if as h −→ 0

lim
h−→0

f(h)

h
= 0.

More generally, if g(h) is a continuous increasing function of h with g(0) = 0,
we say that f(h) is o(g(h)) if

lim
h−→0

f(h)

g(|h|)
= 0.

We say that f is O(h) as h −→ 0 if there exist C,ε > 0 so that for |h| < ε,
we have

|f(h)| ≤ C|h|.

More generally, if g(h) is a continuous increasing function of h with g(0) = 0,
we say that f(h) is O(g(h)) if there exist C,ε > 0 so that for |h| < ε, we have

|f(h)| ≤ Cg(|h|).

Big oh and little oh notation is about describing the size of functions of h
asymptotically as h −→ 0. Now we will see how this relates to differentiation.
We first give the familiar definition of the derivative. Saying that f(h) is
O(g(h)) says that f grows at most as fast as or shinks at most as slowly as
g. Sometimes we say f is of the same order as g. Saying f(h) is o(g(h)) says
that it grows subtantially more slowly or shrinks substantially faster than g.

Derivative of a
function

A function f is differentiable at x if

lim
h−→0

f(x+ h)− f(x)

h

exists. We denote this limit by f ′(x) or d
dx

(f(x)).
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We can reformulate this using little-oh notation. A function f is differen-
tiable at x if and only if there is a number f ′(x) so that

f(x+ h) = f(x) + hf ′(x) + o(h).

(Here when we write +o(h) this is shorthand for adding a function which is
o(h).) The formula above is called the differential approximation for f . It says
that ignoring an o(h) error, the function f is approximated by a linear one
with slope f ′(x).

We see immediately from the differential approximation that if f is differ-
entiable at x then

f(x+ h) = f(x) +O(h).

From this it can be show that if f is differentiable at x then f is continuous
at x.

Theorem 1(The
Product Rule)

If f(x) and g(x) are functions differentiable at x, then the product f(x)g(x)
is differentiable at x and

d

dx
(f(x)g(x)) = f(x)g′(x) + g(x)f ′(x).

Proof of Product
rule

Since f and g are differentiable at x, we have

f(x+ h) = f(x) + hf ′(x) + o(h),

and
g(x+ h) = g(x) + hg′(x) + o(h).

Now we multiply these two equations together.

f(x+ h)g(x+ h) = (f(x) + hf ′(x) + o(h))(g(x) + hg′(x) + o(h))

= f(x)g(x) + h(f(x)g′(x) + g(x)f ′(x)) + o(h).

Thus the theorem is proved.

Theorem 2(The
chain rule)

Suppose that g is differentiable at x and f is differentiable at g(x). Then the
function q(x) = f(g(x)) is differentiable at x and

q′(x) = f ′(g(x))g′(x).
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Proof of the Chain
rule

We calculate

q(x+ h)− q(x) (3.1)

= f(g(x+ h))− f(g(x)) (3.2)

= [g(x+ h)− g(x)]f ′(g(x)) + o(g(x+ h)− g(x)). (3.3)

Here, in the third line, we have just used the differentiability of f at g(x).
Now since g is differentiable at x, we have that g(x+ h)− g(x) is O(h).
In the third line, we have o(g(x+ h)− g(x)) which is o(O(h)) which is o(h).
Thus rewriting equation (1), we get

q(x+ h)− q(x) (3.4)

= [g(x+ h)− g(x)]f ′(g(x)) + o(h) (3.5)

= [g′(x)h+ o(h)]f ′(g(x)) + o(h) (3.6)

= f ′(g(x))g′(x)h+ o(h). (3.7)

Here in the third line, we have used the differentiability of g at x. Thus we
have proved the theorem.

We can go a long way towards building up all of differential calculus using
just the product rule and the chain rule (as well as some simpler things like
the sum rule.)

Proposition 1(The
sum rule)

If f(x) and g(x) are differentiable at x then

d

dx
(f(x) + g(x)) = f ′(x) + g′(x).

Proof of the sum
rule (f(x+ h) + g(x+ h)− f(x)− g(x)) = h(f ′(x) + g′(x)) + o(h).

Here we have used the commutativity of addition as well as the fact that
o(h) + o(h) = o(h).

Proposition
2(Power rule for
natural numbers)

Power rule for natural numbers Let n ∈ N. Let f(x) = xn. Then

f ′(x) = nxn−1.
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Proof of the Power
rule for natural
numbers

Of course, we prove this by induction on n. First we do the base case.

(x+ h)− x = h = h+ o(h).

Here we used the fact that 0 is o(h).
Now we do the induction step. We assume that the derivative of xn−1 is
n− 1xn−2. We write

f(x) = xn−1x.

Now we apply the product rule.

f ′(x) = (n− 1)xn−2x+ xn−1 = nxn−1.

Theorem 3(Quo-
tient Rule, Version
1)

Suppose f(x),g(x) and f(x)
g(x)

are differentiable at x and g(x) 6= 0, then

d

dx
(
f(x)

g(x)
) =

f ′(x)g(x)− f(x)g′(x)

(g(x))2
.

Proof of Quotient
rule, version 1

We just write

f(x) = (
f(x)

g(x)
)g(x),

and apply the product rule getting

f ′(x) =
d

dx
(
f(x)

g(x)
)g(x) + g′(x)(

f(x)

g(x)
).

We now just solve for d
dx

(f(x)
g(x)

).

The quotient rule is in fact a bit stronger.

Theorem 4(Quo-
tient Rule, Version
1)

Let f(x) and g(x) be differentiable at x and let g(x) 6= 0. Then f(x)
g(x)

is
differentiable.
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Proof of Quotient
rule, version 2

f(x+ h)

g(x+ h)
− f(x)

g(x)
(3.8)

=
f(x+ h)g(x)− f(x)g(x+ h)

g(x)g(x+ h)
(3.9)

=
f(x)g(x)− f(x)g(x) + (f ′(x)g(x)− f(x)g′(x))h+ o(h)

g(x)g(x+ h)
(3.10)

=
(f ′(x)g(x)− f(x)g′(x))h+ o(h)

g(x)(g(x) +O(h))
(3.11)

=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
h+ o(h). (3.12)

We can use the chain rule to obtain the inverse rule.

Theorem 5(Inverse
Rule, Version 1)

Suppose that f(g(x)) = x and g is differentiable at x and f is differentiable
at g(x) then

f ′(g(x)) =
1

g′(x)
.

Proof of Inverse
rule, version 1

We just apply the chain rule to f(g(x)) = x and solve for f ′(g(x)).

In fact, there is a stronger version of this, guaranteeing the differentiability
of the inverse f at g(x) if g′(x) 6= 0 and in fact guaranteeing that f exists
under that condition.

An application is that this allows us to differentiate rational powers. We
define

x
1
n = l.u.b{y : yn < x}.

It is easy to see that
(x

1
n )n = x.

Differentiating both sides, the left using the chain rule, we get

1 =
d

dx
(x

1
n )n (3.13)

= n(x
1
n )n−1

d

dx
(x

1
n ). (3.14)
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We solve obtaining
d

dx
(x

1
n ) =

1

n
x−

n−1
n .

We can actually define irrational powers as limits of rationals but we delay
this to our study of exponential functions. As it is, we can differentiate all
algebraic functions and this is a course in which we do “late transcendentals.”

Exercises for Section 3.3

1. Let f(h) be O(1) as h −→ 0 and let g(h) be o(h) as
h −→ 0. Show that f(h)g(h) is o(h) as h −→ 0.

2. Let f(x) be a function on an interval (a,b). Let
c ∈ (a,b) and let f be differentiable at c. Suppose
moreover that f ′(c) > 1. Show that there is δ > 0
so that when x ∈ (c,c+ δ), we have

f(x) > f(c) + x− c.

3. Let f and g be functions which are n times differ-
entiable at a point x. Denote by f (j) and g(j), the
jth derivative of f and g respectively. Show that
the product function fg is n times differentiable at
x with

fg(n)(x) =

n∑
j=0

(
n

j

)
f (j)(x)g(n−j)(x).

Hint: Use induction.
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♦ 3.4 Mean Value Theorem

In this section, we’ll state and prove the mean value theorem and describe
other ways in which derivatives of functions give us global information about
their behavior.

Local maximum (or
minimum)

Let f be a real valued function on an interval [a,b]. Let c be a point in the
interior of [a,b]. That is, c ∈ (a,b). We say that f has a local maximum
(respectively local minimum) at c if there is some ε > 0 so that f(c) ≥ f(x)
(respectively f(c) ≤ f(x)) for every x ∈ (c− ε,c+ ε).

Lemma Let f be a real valued function on [a,b], differentiable at the point c of the
interior of [a,b]. Suppose that f has a local maximum or local minimum at
c. Then

f ′(c) = 0.

Proof of Lemma Since f is differentiable at c, we have that

f(x) = f(c) + f ′(c)(x− c) + o(|x− c|),

as x − c −→ 0. Suppose that f ′(c) 6= 0. From the definition of o, we have
that there is some δ > 0 so that

|f(x)− f(c)− f ′(c)(x− c)| ≤ |f
′(c)||x− c|

2
,

whenever
|x− c| < δ.

(This is true since indeed we can choose δ to bound by ε|x − c| for any
ε > 0.) Thus whenever |x − c| < δ, the sign of f(x) − f(c) is the same as
the sign of f ′(c)(x − c). This sign changes depending on whether x − c is
positive or negative. But this contradicts f(c) being either a local maximum
or minimum. Thus our initial assumption was false and we have f ′(c) = 0 as
desired.

In high school calculus, this lemma is often used for solving optimization
problems. Suppose we have a function f which is continuous on [a,b] and dif-
ferentiable at every point in the interior of [a,b]. Then from the extreme value
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theorem, we know the function achieves a maximum on [a,b]. One possibility
is that the maximum is at a or at b. If this is not the case, then the maximum
must be at a point where f ′(c) = 0. Instead, we shall use the Lemma to prove
the Mean Value theorem.

Rolle’s Theorem Let f(x) be a function which is continuous on the closed interval [a,b] and
differentiable on every point of the interior of [a,b]. Suppose that f(a) = f(b).
Then there is a point c ∈ [a,b] where f ′(c) = 0.

Proof of Rolle’s
Theorem

By the extreme value theorem, f achieves its maximum on [a,b]. By applying
the extreme value theorem to −f , we see that f also achieves its minimum
on [a,b]. By hypothesis, if both the maximum and minimum are achieved on
the boundary, then the maximum and minimum are the same and thus the
function is constant. A constant function has zero derivative everywhere. If f
is not constant, then f has either a local minimum or a local maximum in the
interior. By the Lemma, the derivative at the local maximum or minimum
must be zero.

Mean Value Theo-
rem

Let f(x) be a function which is continuous on the closed interval [a,b] and
which is differentiable at every point of (a,b). Then there is a point c ∈ (a,b)
so that

f ′(c) =
f(b)− f(a)

b− a
.
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Proof of Mean
Value Theorem

Replace f(x) by

g(x) = f(x)− (f(b)− f(a))(x− a)

b− a
.

Observe that g(a) = f(a) and g(b) = f(b)− (f(b)− f(a)) = f(a). Further g
has the same continuity and differentiability properties as f since

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

Thus we may apply Rolle’s theorem to g finding c ∈ (a,b), where g′(c) = 0.
We immediately conclude that

f ′(c) =
f(b)− f(a)

b− a
,

proving the theorem.

We can use the Mean value theorem to establish some of our standard
ideas about the meaning of the derivative as well as our standard tests for
determining whether a critical point, a point c in the interior of the domain of
a function f , where f ′(c) = 0, is a local maximum or a local minimum.

Proposition Suppose a function f is continuous on the interval [a,b] and differentiable at
every point of the interior (a,b). Suppose that f ′(x) > 0 for every x ∈ (a,b)
then f(x) is strictly increasing on [a,b]. (That is for every x,y ∈ [a,b] if x < y
then f(x) < f(y).

Proof of Proposi-
tion

Given x,y ∈ [a,b] with x < y, we have that f satisfies the hypotheses of the
mean value theorem on [x,y]. Thus there is c ∈ (x,y) so that

f(y)− f(x) = f ′(c)(y − x).

Since we know that f ′(c) > 0, we conclude that

f(y)− f(x) > 0,

or in other words
f(y) > f(x).

Thus f is increasing.
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Theorem(First
Derivative Test)

Let f be a function continuous on [a,b] and differentiable on (a,b). Let c be a
point of (a,b) where f ′(c) = 0. Suppose there is some δ > 0 so that for every
x ∈ (c− δ,c), we have that f ′(x) > 0 and for every x ∈ (c,c+ δ), we have that
f ′(x) < 0, then f has a local maximum at c.

Proof of First
Derivative Test

By choosing δ sufficiently small, we arrange that (c− δ,c+ δ) ⊂ (a,b). Thus,
we may apply the previous Proposition to f on [c − δ,c] concluding that
f(c) > f(x) for any x ∈ (c − δ,c]. Next, we apply the proposition to −f on
the interval [c,c + δ], concluding that −f(x) > −f(c) for any x ∈ (c,c + δ].
Multiplying the inequality b −1, we see this is the same as f(c) > f(x). Thus
f achieves its maximum on [c − δ,c + δ] at c. In other words, f has a local
maximum at c.

Theorem(Second
derivative test)

Let f be a function continuous on [a,b] and differentiable on (a,b). Let c be a
point of (a,b) where f ′(c) = 0. Suppose the derivative f ′(x) is differentiable
at c and that f ′′(c) < 0. Then f has a local maximum at c.

Proof of the second
derivative test

Since f ′(c) = 0, we have that

f ′(x) = f ′′(c)(x− c) + o(x− c),

as x −→ c. In particular, there is δ > 0 so that

|f ′(x)− f ′′(c)(x− c)| < 1

2
|f ′′(c)||x− c|.

(This is true since indeed we can choose δ to bound by ε|x−c| for any ε > 0.)
Thus for any x ∈ (c− δ,c), we have that f ′(x) > 0, while for any x ∈ (c,c+ δ)
we have f ′(x) < 0. Thus we may apply the first derivative test to conclude
that f has a local maximum at c.

Exercises for Section 3.4
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1. We say that a function f is convex on the interval
[a,b] if for every c,d ∈ [a,b] and for every t ∈ [0,1],
we have the inequality

tf(c) + (1− t)f(d) ≥ f(tc+ (1− t)d).

This means that the secant line of the graph of f
between c and d is above the graph. Show that if
f is convex and if f is twice differentiable on (a,b)
then

f ′′(x) ≥ 0,

for every x ∈ (a,b). Hint: It is enough to prove
that the derivative f ′ is nondecreasing on (a,b) and
use the definition of the derivative. To prove this,
assume there are points c,d ∈ (a,b) with c < d but
f ′(d) < f ′(c) and contradict convexity. You can use
the continuity of the first derivative and the mean
value theorem.

2. Let f be a continuous convex function on [a,b] which
is not constant on any subinterval of [a,b]. (But f
is not necessarily twice or even once differentiable.)
Show that f achieves a unique local minimum on
[a,b]. Hint: Assume there are two and reach a con-
tradiction.

♦ 3.5 Applications of the Mean Value Theorem

Last time, we proved the mean value theorem:

Mean Value theo-
rem, again

Let f be a function continuous on the interval [a,b] and differentiable at every
point of the interior (a,b). Then there is c ∈ (a,b) so that

f ′(c) =
f(b)− f(a)

b− a
.

On first glance, this seems like not a very quantitative statement. There
is a point c in the interval (a,b) where the equation holds, but we can’t use
the theorem to guess exactly where that point c is, and so it is hard for us to
use the mean value theorem to obtain information about large scale changes
in the function f from the value of its first derivative.

But in fact, this objection is somewhat misleading. The mean value theo-
rem is really the central result in Calculus, a result which permits a number of
rigorous quantitative estimates? How does that work? The trick is to apply
the mean value theorem, primarily on intervals where the derivative of the
function f is not changing too much. As it turns out, understanding second
derivatives is key to effectively applying the mean value theorem. We will
spend this lecture giving some examples.

I once sloppily assigned this theorem as a homework problem.
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Theorem 1 Theorem 1 Let f be a function on an interval [a,b] and let c ∈ (a,b) be a
point in the interior. Suppose that f is twice differentiable at c. [That is,
suppose that f is differentiable at every point of an open interval containing
c and that the derivative f ′ is differentiable at c.] Then

f ′′(c) = lim
h−→0

f(c+ h) + f(c− h)− 2f(c)

h2
.

It is tempting to try to prove this just by comparing the first derivative of
f to the difference quotients

f(c+ h)− f(c)

h
,

and
f(c)− f(c− h)

h
,

subtracting them and dividing by h. These differ from f ′(c) and f ′(c− h) by
o(1) respectively. If we subtract the two difference quotients and divide by h,
we do get the expression

D(c,h) =
f(c+ h) + f(c− h)− 2f(c)

h2
,

whose difference we take the limit of in Theorem 1. However, the differentia-
bility of f , only guarantees that this difference quotient D(c,h) differs from

f ′(c)− f ′(c− h)

h
,

by o( 1
h
) (because we divided by h). That is not enough to guarantee that the

limit of D(c,h) is the same as the second derivative. To get that, we need
a little more than the differential approximation for f , which only estimates
f(c + h) − f(c) to within o(h). We need an estimate that is within o(h2)
because of the h2 in the denominator of the expression under the limit. We
will get such an estimate by using the second derivative to get a differential
approximation for the first derivative and then using the mean value theorem
in quite small intervals. We proceed.

Theorem(Taylor ap-
proximation, order
2, weak version)

Let f be a function which is continuous on an interval I having c on its
interior and suppose that f ′(x) is defined everywhere in I. Suppose further
that f ′′(c) is defined. Then for h sufficiently small that [c,c+h] ⊂ I, we have

f(c+ h) = f(c) + hf ′(c) +
h2

2
f ′′(c) + o(h2).
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Proof of Taylor ap-
proximation, order
2, weak version

We see from the differential approximation for f ′(x) that

f ′(c+ t) = f ′(c) + tf ′′(c) + o(t),

for t < h. Since we restrict to t < h, we can replace o(t) by o(h). (The
equation above depends on both t and h.) So we record:

f ′(c+ t) = f ′(c) + tf ′′(c) + o(h). 1

Now our plan is to use the above expression for f ′ together with the mean
value theorem on small interval to obtain a good estimate for f(c+h)−f(c).
We should specify what these intervals are going to be. We will pick a natural
number n, which will be the number of equal pieces into which we divide the
interval [c,c+h]. We define points xj where j will run from 0 to n as follows:

xj = c+
jh

n
.

We observe that we can calculate f(c+h)− f(c), which we are interested in,
by understanding f(xj)− f(xj−1) for each j from 1 to n. Precisely, we have

f(c+ h)− f(c) =
n∑
j=1

f(xj)− f(xj−1),

since the sum telescopes to f(xn) − f(x0) = f(c + h) − f(c). Now we will
understand each term in the sum using the mean value theorem on [xj−1,xj].
There is yj ∈ (xj−1,xj) with

h

n
f ′(yj) = f(xj)− f(xj−1).

Thus we rewrite the sum

f(c+ h)− f(c) =
n∑
j=1

h

n
f ′(yj).

Now we estimate f ′(yj) using the differential approximation, equation (1).
We conclude

f ′(yj) = f ′(c) + (yj − c)f ′′(c) + o(h).

Now we use the fact that yj ∈ (xj−1,xj) to estimate yj − c = jh
n

+O(h
n
). Now

we combine everything.

f(c+ h)− f(c) =
n∑
j=1

[
h

n
f ′(c) +

jh2

n2
f ′′(c) +O(

h2

n2
) + o(

h2

n
)].
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Proof of Taylor ap-
proximation, order
2, weak version,
continued

Now we sum all the terms in the square bracket separately. The terms con-
stant in j get multiplied by n. Just the second term depends on j (linearly!)
and we recall our old notation

S1(n) =
n∑
j=1

j,

to write

f(c+ h)− f(c) = hf ′(c) + h2
S1(n)

n2
f ′′(c) +O(

h2

n
) + o(h2).

Observe that this equality holds for every choice of n. We take the limit as
n goes to infinity and obtain the desired result, remembering that

lim
n−→∞

S1(n)

n2
=

1

2
.

Let’s take a deep breath. A great deal happened in that argument. It
might take a moment to digest. But at least you have the power to use the
second order Taylor approximation to prove Theorem 1.

Proof of Theorem 1 Plugging in the weak version of Taylor approximation to order 2, we get

f(c+ h) + f(c− h)− 2f(c) = f ′′(c)h2 + o(h2).

(All the lower order terms in h cancel.) But this is just what we wanted to
prove.

A bit of further reflection shows that if we have enough derivatives we
adapt the above argument to give us an estimate for f(c + h) − f(c) up to
o(hm) for any m. Let’s do this. We adopt the notation that where defined,
f (j) denotes the jth derivative of f .
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Theorem(Taylor ap-
proximation, arbi-
trary order, weak
version)

Let f be a function which is continuous on an interval I having c on its interior
and suppose that f ′(x), . . . f (m−2)(x) are defined and continuous everywhere
in I. Suppose that f (m−1) is defined everywhere on I and that f (m)(c) is
defined. Then for h sufficiently small that [c,c+ h] ⊂ I, we have

f(c+ h) = f(c) +
m∑
k=1

hk

k!
f (k)(c) + o(hm).
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Proof of Taylor ap-
proximation, arbi-
trary order, weak
version)

We will prove this by induction on m. We observe that the base case m = 2
is just the previous theorem. Thus we need only perform the induction step.
We use the induction hypothesis to get an appropriate estimate for the first
derivative anywhere in the interval [c,c+ h].

f ′(c+ t) = f ′(c) +
m∑
k=2

f (k)(c)

(k − 1)!
tk−1 + o(hm−1). 2

Now we proceed as in the proof of the previous theorem. We choose n and
let xj = c+ jh

n
. We observe that

f(c+ h)− f(c) =
n∑
j=1

f(xj)− f(xj−1),

and we use the mean value theorem to find yj ∈ (xj−1,xj) with

f(xj)− f(xj−1) = f ′(yj)
h

n
.

Now we use equation (2) to estimate f ′(yj) as before and we obtain

f(c+ h)− f(c) =
n∑
j=1

[(
m∑
k=1

(
hk

(k − 1)!nk
f (k)(c)jk−1 +O(

hk

n2
)) + o(

hm

n
).]

Now summing in j , we obtain

f(c+ h)− f(c) =
m∑
k=1

hk

(k − 1)!

Sk−1(n)

nk
+O(

hk

n
) + o(hm).

Letting n tend to infinity and using the fact that

lim
n−→∞

Sk−1(n)

nk
=

1

k
,

we obtain the desired result.

We make some remarks

1. You should be tempted to ask, does this mean that every function which
is infinitely differentiable everywhere can be given as the sum of a power series.
We have shown that if the function is n times differentiable near c, then at
c+ t near c, we have

f(c+ t) = Tn,f,c(t) + o(tn),

where Tn,f,c is the degree n Taylor approximation to f near c. It is tempting to
try to take the limit as n −→∞. This doesn’t work because of the definition
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of o(tn). We just know that

lim
t−→0

f(c+ t)− Tn,f,c(t)
tn

= 0,

but for different t, the rate at which the limit goes to 0 can differ substantially.

2. Am I not then pulling a fast one in light of 1. Didn’t I say in the proofs
that

f(c+ t) = f(c) + tf ′(c) + o(h),

when in fact, it should be o(t) but with a different rate of convergence for each
t. No. But it’s because these estimates are all coming from the same limit.
Suppose it weren’t true that

f(c+ t) = f(c) + tf ′(c) + o(h).

Then there is no δ > 0 so that |h| < δ implies

|f(c+ t)− f(c)− tf ′(c)| ≤ εh,

for every t < h. Then we could pick a sequence tj going to zero, for which
the absolute value is greater than εh and hence εtj. This would violate the
definition of the derivative at c.

3. What’s going on in these proofs? How come there are all these compli-
cated sums showing up. Calculus isn’t really about sums is it? There must
be some way we can make them all go away. In fact, we can by subsuming
them into a definition. It’s a definition that’s coming up soon: the definition
of the integral. What we really did in the proof of the second order version of
Taylor’s approximation is to calculate:

f(c+ h)− f(c)

=

∫ c+h

c

f ′(x)dx

=

∫ c+h

c

[f ′(c) + xf ′′(c) + o(h)]dx.

In the same way, the kth order version of Taylor’s approximation can be ob-
tained by integrating the k − 1st order version.

4. This trick of integrating is not the usual way that textbooks prove the
weak version of Taylor approximation. Instead they use L’Hopital’s rule. Here
is the precise statement.
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Theorem(L’Hopital’s
rule)

Theorem(L’Hopital’s rule) Let f(x) and g(x) be functions defined and
continuous on an interval [a,b]. Suppose they are differentiable on the open
interval (a,b). Suppose that c ∈ (a,b), f(c) = g(c) = 0 and the limit

lim
x−→c

f ′(c)

g′(c)

exists. (This requires that g′(x) be different from 0 for all points but c of an
open interval containing c.) Then

lim
x−→c

f(x)

g(x)
= lim

x−→c

f ′(c)

g′(c)
.

The proof of this is again an application of the mean value theorem, or
more specifically Rolle’s theorem.
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Proof of L’Hopital’s
rule

Let x be any point different than c. We apply Rolle’s theorem to the function

h(t) = f(x)g(t)− g(x)f(t),

on the interval [c,x] if x > c or [x,c] if x < c. It is easy to check (using the fact
that f(c) = g(c) = 0) that the function h satisfies the hypotheses of Rolle’s
theorem. Thus there is d ∈ (c,x) or (x,c) depending on which makes sense,
so that

h′(d) = 0.

Unwinding the algebra, we get that

f ′(d)

g′(d)
=
f(x)

g(x)
.

Let

L = lim
x−→c

f ′(c)

g′(c)
,

which by hypothesis, we know exists. Then for every ε > 0 there is δ(ε) so
that |d− c| < δ implies that

|L− f ′(d)

g′(d)
| < ε.

Now suppose that |x−c| < δ. We’ve shown that there is d with |d−c| < |x−c|
so that

f ′(d)

g′(d)
=
f(x)

g(x)
.

Thus

|L− f(x)

g(x)
| < ε,

which was to be shown.

A typical way that L’Hopital’s rule can be applied is that we start with a
limit

lim
x−→c

f(x)

g(x)

which we can’t compute because, though f and g are continous at c, we have
f(c) = 0 and g(c) = 0. We keep differentiating f and g until finally at the kth
step, we are no longer in this condition and the limit is

f (k)(c)

g(k)(c)
.

This is exactly how we could prove the weak version of Taylor approximation.
Moreover, we could go in the reverse direction. Given f and g we could apply
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the weak Taylor approximation to order k at c and obtain the limit

f (k)(c)

g(k)(c)
.

However, you should not assume that weak Taylor approximation and L’Hopital’s
rule are equivalent. L’Hopital’s rule is actually stronger because it applies even
when it does not help compute the limit. (More precisely, it applies when f
and g vanish to infinite order at c, that is when all their derivatives vanish at
c.)

Exercises for Section 3.5

1. Prove the weak version Taylor’s approximation
to arbitrary order using L’Hopital’s rule. (Hint:
Rewrite the conclusion as saying that a certain limit
is equal to zero.)

2. Prove L’Hopital’s rule at infinity. Suppose f(x) and
g(x) are continuous and differentiable functions on
all the reals with

lim
x−→∞

f(x) = lim
x−→∞

g(x) = 0.

(Recall this means for ever ε > 0, there is M > 0
so that |x| > M implies |f(x)| < ε and |g(x)| < ε.)
Suppose

lim
x−→∞

f ′(x)

g′(x)
,

exists. Then show that

lim
x−→∞

f ′(x)

g′(x)
= lim
x−→∞

f(x)

g(x)
.

Hint: Apply L’Hopital’s rule to the functions F (t) =
f( 1

t ) and G(t) = g( 1
t ). Be careful to note that you

can define F and G so that they extend continuously
to t = 0.

♦ 3.6 Exponentiation

Today’s lecture is going to focus on exponentiation, something you may con-
sider one of the basic operations of arithmetic. However there is subtle limiting
process that takes place when defining exponentiation which we need to fully
recognize. Taking a number to an nth power when n is a natural number is
just defined recursively from multiplication.

xn+1 = xnx.

Defining negative integer powers is obvious enough:

Negative powers

x−n =
1

xn
.
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We define rational powers similarly to the way we defined square roots.

Rational powers Let x be a positive real number and p
q

be a positive rational (with p and q
natural numbers. Then

x
p
q = l.u.b.{y : yq < xp}.

It is worth taking a moment to prove the key law of exponents for rationals,
namely

Lemma 1(rational
law of exponents) x

p
q x

r
s = x

p
q
+ r
s .

Proof of Lemma 1 We calculate

x
p
q x

r
s

= l.u.b.{y : yq < xp}l.u.b{z : zs < xr}
= l.u.b.{y : yqs < xps}l.u.b{z : zqs < xrq}
= l.u.b.{yz : yqs < xps,zqs < xrq}
= l.u.b.{yz : (yz)qs < xps+rq}

= x
ps+rq
qs .

Now we are ready to define xα for x > 1 and α both positive reals.

Real powers
xα = l.u.b.{x

p
q :

p

q
∈ Q,

p

q
< α}.

For α negative, and x > 1, we can just define xα as 1
x−α

For x < 1, we can
just define xα as ( 1

x
)−α.

We prove the exponent law, namely:

Lemma 2(Exponent
law) xαxβ = xα+β.
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Proof of Lemma 2

xαxβ

= l.u.b.{x
p
q :

p

q
< α}l.u.b{x

r
s :

r

s
< β}

= l.u.b.{x
p
q
+ r
s ;
p

q
< α;

r

s
< β}

= l.u.b.{x
t
u ;
t

u
< α + β}

= xα+β.

Another crucially important property of exponentiation is its continuity.
To be precise:

Theorem 1 Let x be a real number x > 1. Consider the function f(α) = xα. The function
f is continuous for at every real α.

The restriction to x > 1 is only for convenience. We obtain the case x < 1
from the limit law for quotients.
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Proof of Theorem 1 Proof We need only prove that for fixed α and for every ε > 0, there is a δ
so that |β − α| < δ implies that |xβ − xα| < ε.
We easily calculate that

|xβ − xα| ≤ |xα||xβ−α − 1|.

We claim it suffices to find δ so that |xδ − 1| < ε
2xα

. Suppose we have done
this. Then if β − α is positive, we have immediately

|xβ − xα| ≤ |xα||xβ−α − 1| < ε

2
.

On the other hand if β − α is negative, we use

xβ−α >
1

1− ε
2xα

> 1− ε

xα
,

from the geometric series as long as ε < 1. Thus we have

|xβ − xα| ≤ |xα||xβ−α − 1| < ε.

To see that such a δ exists, we simply observe that (1 + ε)q > 1 + qε. We pick
q large enough that 1 + qε is larger than x and let δ = 1

q
.

Now we are ready to discuss the most important aspect of the theory of
exponentiation. We define the natural base, the very special number e.

The most natural definition is

e

e = lim
n−→∞

(1 +
1

n
)n.

One interpretation of this is that e is the number of dollars we would
have in a savings account if one year earlier we has deposited one dollar,
and the account earns interest at the fantastical rate of 100 %, compounded
continuously. Then the nth term of the limiting sequence is the amount of
money we would have if the interest only compounded at n equal intervals.

How do we know the limit exists? We just use the binomial law. We
calculate

(1 +
1

n
)n =

∞∑
j=0

(
n

j

)
1

nj
.
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(We have no problem letting this sum run to infinity as long as we interpret(
n
j

)
to be 0 as long as j > n. Now we examine the jth term in the sum. It is

n(n− 1) . . . (n+ 1− j)
j!nj

.

Clearly this increases to 1
j!

as n increases to infinity. Thus we conclude

e = 1 + 1 +
1

2!
+ · · ·+ 1

j!
+ . . .

This series converges easily by the ratio test.

We observe that we can rewrite the limit as the limit of a function whose
argument approaches infinity rather than as the limit of a sequence

Claim

e = lim
y−→∞

(1 +
1

y
)y.

How do we see this. Suppose n < y < n+ 1. Then

(1 +
1

n+ 1
)n ≤ (1 +

1

y
)y ≤ (1 +

1

n
)n+1.

Then we see we have the desired limit by the squeeze theorem.

We shall be very interested in studying the function

f(x) = ex.

What is this? By continuity of exponentiation, we get

ex = [ lim
y−→∞

(1 +
1

y
)y]x = lim

y−→∞
(1 +

1

y
)yx.

Now we make a change of variables, introducing z = yx. We conclude

ex = lim
z−→∞

(1 +
x

z
)z.

We restrict to integer z, obtaining

ex = lim
n−→∞

(1 +
x

n
)n.

We can analyze the last expression as we did the expression for e using the
binomial theorem. The jth term converges to 1

j!
xj. We conclude
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ex =
∞∑
j=0

xj

j!
.

We can differentiate the function ex from the definition of the derivative:

d

dx
ex

= lim
h−→0

ex+h − ex

h

= ex lim
h−→0

eh − 1

h

= ex lim
h−→0

(
∑∞

j=0
hj

j!
)− 1

h

= ex lim
h−→0

∞∑
j=1

hj−1

j!

= ex.

Next time, we will use the remarkable properties of the function ex to obtain
negative results on the question of when infinitely differentiable functions are
given by convergent Taylor series.

Exercises for Section 3.6

1. Prove for α an irrational, real number, that when
f(x) = xα and when x > 0, one has that

f ′(x) = αxα−1.

Hint: Use the definition of the derivative as a limit
and be prepared to use the definition of the limit.
Compare xα to xr with r rational. Use different val-
ues of r for different values of h in the definition of
the derivative. You may have to use the mean value
theorem and the continuity of xα−1. Shorter proofs
are perhaps possible.

♦ 3.7 Smoothness and series

For the last several lectures, we have been building up the notion of Taylor
approximation. We proved
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Theorem Let f,f ′,f ′′, . . . ,f (n−2) be defined and continuous everywhere on
a closed interval I having c in the interior. Let f (n−1) be defined everywhere
on I and let f (n)(c) be defined. Then

f(x) = f(c) +
n∑
k=1

f (k)(c)(x− c)k

k!
+ o(|x− c|n).

Suppose for a moment that a function and all (infinitely many) of its deriva-
tives are defined and continuous on a closed interval I containing c. We say
that a function f with this property is in the class C∞(I). It is infinitely
continuously differentiable on I. Then we define the power series (in x− c)

f(c) +
∞∑
k=1

f (k)(c)(x− c)k

k!
,

to be the formal Taylor series of f at c.

We have already met some important functions given by convergent power
series (which in light of the theorem can be shown to be their formal Taylor
series.) To wit

1

1− x
= 1 + x+ x2 + · · ·+ xn + . . . |x| < 1

We know the above because it is the formula for the sum of a geometric
series.

Further

ex = 1 + x+
x2

2
+ · · ·+ xn

n!
+ . . . ,

which we discovered last time using the binomial theorem. Moreover, the
failure of the first series to converge outside of radius 1, can be explained by
the fact that the function 1

1−x really has a discontinuity at x = 1. We could be
tempted to expect that any function in C∞(I) can be given by a convergent
power series at least in small parts of that interval. Today we will see why
such an expectation would be wrong.

We’re going to use properties of the exponential function to see why not all
C∞ function can be given as convergent power series. An important feature of
exponential growth is that it is fast. It is indeed faster than any polynomial.
To be precise:

Lemma

lim
x−→∞

xk

ex
= 0,

for all natural numbers k.
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The Lemma is usually proven using L’Hopital’s rule, which have not yet
developed. But the fact is much more visceral and basic.

To prove the lemma, we first study this limit for x restricted to natural
numbers. That is we study

nk

en
.

Now the denominator is rather easily understood as a product of n copies
of e.

en = ee . . . e.

To properly compare it to nk, we should express nk as a product of n terms.
We can readily do this by setting up a telescoping product.

nk = 1(
2k

1k
)(

3k

2k
) . . . (

nk

(n− 1)k
).

Now it is rather easy to understand the limit of the factors of nk, precisely
to show

lim
n−→∞

nk

(n− 1)k
= 1.

Using the definition of the limit, we see that there is N > 0 so that when
n > N , we have

nk

(n− 1)k
≤ e

2
.

Hence we get

0 ≤ nk

en
=

1

e

2k

1k

e
. . .

nk

(n−1)k

e
≤ C(

1

2
)n−N .

Here C is the product of the first N factors and we have just used that the
rest is less than 1

2
.

Now we just apply the squeeze theorem. To control non-integer x, we
assume n < x < n+ 1 and see

nk

en+1
≤ xk

ex
≤ (n+ 1)k

en
.

We apply the squeeze theorem again.

So what did any of that have to do with the failure of formal Taylor series
to converge to their function.

We introduce a very special function:

f(x) =

{
e−

1
x2 if x > 0;

0 if x ≤ 0.
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This f is a piecewise defined function, and so we can expect there to be
problems either wih existence or continuity of the derivatives at x = 0. But
let’s see what happens.

d

dx
(e−

1
x2 ) = (

2

x3
)e−

1
x2 .

d2

dx2
(e−

1
x2 ) = [

d

dx
(

2

x3
)]e−

1
x2 + (

2

x3
)2e−

1
x2 .

And so on. But in general

dn

dxn
(e−

1
x2 ) = pn(

1

x
)e−

1
x2 ,

with pn a polynomial. We use the change of variables y = 1
x

to calculate

lim
x−→0

pn(
1

x
)e−

1
x2 = lim

y−→∞

pn(y)

ey2
= 0.

But what about right at 0? Are the derivatives of f defined?

Claim e−
1
x2 is o(x).

Proof of claim

lim
h−→0

e−
1
h2

h
= lim

y−→∞

y

ey2
= 0.

Hence f ′(0) = 0 by the claim and the definition of the derivative. We have
shown that f has a continuous derivative everywhere. Proceeding by induction
to prove that f (n)(x) is continuous, we observe that f (n−1)(x) is o(x) in the
same way, obtaining f (n)(x) = 0.

Putting together all we have learned about f , we obtain

Theorem Our special function f is in the class C∞(R), and all the deriva-
tives f (n)(0) are equal to zero. Thus the formal Taylor series of f at 0 is
identically 0.

Thus taking the formal power series of f at 0 throws away all information
about f ,

Once a mathematical hope fails, it tends to fail catastrophically. Having
discovered this single weird function f , we can use it to engineer a whole
menagerie of weird function, which we proceed to do.

Theorem For any closed interval [a,b], there is a function f[a,b] which is of
the class C∞(R) so that f[a,b](x) > 0 for x ∈ (a,b) but f(x) = 0 otherwise.
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Proof Define
f[a,b](x) = f(x− a)f(b− x).

Corollary For every interval [−ε,ε], there is fε so that fε(x) = 1 if x ∈
(−ε,ε), so that 0 < f(x) ≤ 1 if x ∈ (−2ε,2ε) and f(x) = 0 otherwise.

Proof We define

fε(x) =
f[−2ε,2ε](x)

f[−2ε,2ε](x) + f[−3ε,−ε](x) + f[ε,3ε](x)
.

We will conclude with an interesting relationship between C∞(R) functions
and formal power series. We recall that there are plenty of power series whose
radius of convergence is 0.

Example
Consider the power series

∞∑
n=0

n!xn.

It has radius of convergence 0. We can see this since the ratios of consecutive
terms are nx. For any fixed x 6= 0, these tend to infinity.

We now state and sketch the proof of a theorem of Borel which says that
nonetheless, every power series is the formal Taylor series of some C∞(R)
function.

Theorem (Borel) Let
∑∞

n=0 anx
n be some power series. (Any power series

whatsoever.) There is a C∞(R) function g which has this series as its Taylor
series at 0.

Sketch of Proof Pick {εk} a fast decreasing sequence of positive real
numbers. (How fast will depend on the sequence {an}.

Define

g(x) =
∞∑
k=0

akx
kfεk(x).

Thus the kth term of the series really is exactly akx
k for x sufficiently small.

(But how small will depend on k.) On the other hand, for each non-zero x,
only finitely many terms are non-zero, so the sum converges there. We simply
choose the sequence {εk} small enough that

g(x)−
n∑
k=0

akx
k = o(xn),

for every n.

Exercises for Section 3.7
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1. Show that the function f(x) which is equal to 0
when x = 0 and equal to x2 sin( 1

x ) otherwise is dif-
ferentiable at x = 0 but the derivative is not contin-
uous. Hint: Probably you’re upset that we haven’t
defined sin yet, but that isn’t the point. You may
use that sin and cos are continuous, that they are
bounded and that cos is the derivative of sin.

2. Give a proof of Borel’s theorem in full detail. Hint:
Explain exactly how to pick the numbers εk in terms
of the ak so that you get

g(x)−
n∑
k=0

akx
k = o(xn).

First consider what to do when |ak| is an increasing
sequence.

♦ 3.8 Inverse function theorem

Today, we’ll begin with a classical application of the calculus: obtaining nu-
merical solutions to equations.

Situation: We would like to solve an equation

f(x) = 0.

Here f is a function and we should imagine that its first and second deriva-
tives are continuous in some interval. We approach this problem by what is
usually called Newton’s method.

First we make an initial guess x0. Probably, we are not too lucky and

f(x0) 6= 0.

Thus what we do is that we calculate f ′(x0). We obtain the linear approx-
imation

f(x) ≈ f(x0) + f ′(x0)(x− x0).

We solve for the x1 which makes the linear approximation equal to zero. That
is

x1 = x0 −
f(x0)

f ′(x0)
.

Usually, we are still not lucky and

f(x1) 6= 0.

Thus we obtain x2 from x1 in the same way, and so on. For general j, we get

xj = xj−1 −
f(xj−1)

f ′(xj−1).

A question we should ask, which is extremely practical, is how fast does
the sequence {f(xj)} converge to 0. If we knew that, we should really know
how many steps of Newton’s method we should have to apply to get a good
approximation to a zero.
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This is a job for the Mean Value Theorem. In the interval [x0,x1] (or [x1,x0]
depending on which of x0 or x1 is greater) there is a point c so that

f ′(c) =
f(x1)− f(x0)

x1 − x0
.

Thus

f(x1)− f(x0) = − f(x0)

f ′(x0)
f ′(c).

Suppose that in our interval where all the action is taking place we have
an upper bound M for |f ′′(x)|. Then

|f(x1)| ≤ |f(x0)||1−
f ′(c)

f ′(x0)
|

=
|f(x0)|
|f ′(x0)|

|f ′(x0)− f ′(c)|

≤ M |f(x0)|
|f ′(x0)|

|x0 − c|

≤ M |f(x0)|2

|f ′(x0)|2
.

Suppose further that in our interval, we have a lower bound on the absolute
value of the derivative,

|f ′(x)| > 1

K
.

Then we conclude
|f(x1)| ≤ K2M |f(x0)|2.

Moreover, we have the same thing for every j.

|f(xj)| ≤ K2M |f(xj−1)|2.

To get any benefit from these inequalities, we must have |f(x0)| < 1
K2M

.
In other words, our initial guess should be pretty good. But, if this is true,
and |f(x0)| = r

K2M
with r < 1, we get from these inequalities:

|f(x1)| ≤
r2

K2M
,

|f(x2)| ≤
r4

K2M
,

and in general

|f(xj) ≤
r2

j

K2M
.

This is a pretty fast rate of convergence. It is double exponential.

We encapsulate all of this as a theorem:
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Theorem Let I be an interval and f a function which is twice continuously
differentiable on I. Suppose that for every x ∈ I, we have |f ′′(x)| < M and
|f ′(x)| > 1

K
. Then if we pick x0 ∈ I, and we define the sequence {xj} by

xj = xj−1 −
f(xj−1)

f ′(xj−1)
.

Then if we assume that each xj is in I and that |f(x0)| < r
K2M

, then we obtain
the estimate

|f(xj)| ≤
r2

j

K2M
.

Just to know an equation has a solution, we often need a lot less. We say
that a function f is strictly increasing on an interval [a,b] if for every x,y ∈ [a,b]
with x < y, we have f(x) < f(y).

Theorem Let f be continuous and increasing on [a,b]. The f has an
inverse uniquely defined from [f(a),f(b)] to [a,b].

Proof For c ∈ [f(a),f(b)], we want x with f(x) = c. Since

f(a) ≤ c ≤ f(b),

and f is continuous, we have that there exists such an x by the Intermediate
Value theorem. Because f is strictly increasing, this c is unique.

With f as above, if f is differentiable at a point x with nonzero derivative,
we will show that its inverse is differentiable at f(x).

Theorem Let f be a stricly increasing continuous function on [a,b]. Let g
be its inverse. Suppose f ′(x) is defined and nonzero for some x ∈ (a,b). Then
g is differentiable at f(x) and

g′(f(x)) =
1

f ′(x)
.

Proof By the differentiability of f at x, we get

f(y) = f(x) + f ′(x)(y − x) + o(y − x).

Now we solve for y − x.

(y − x) =
f(y)− f(x)

f ′(x)
+ o(y − x).

We rewrite this as

g(f(y))− g(f(x)) =
f(y)− f(x)

f ′(x)
+ o(y − x).
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Finally we simply observe that anything that is o(y−x) is also o(f(y)− f(x))
since

lim
y−→x

f(y)− f(x)

y − x
= f ′(x).

Thus we have obtained our desired result.

Example The function ex is strictly increasing on the whole real line. Thus
it has an inverse from the positive reals to the real line. We call this inverse
function log. We have

d

dx
(log x) =

1

x
.

Application: logarithmic differentiation
An important fact about log is that

log(ab) = log a+ log b.

This gives rise to a nice way of thinking of the product and quotient rules
(and generalizations.)

Instead of calculating d
dx

(fg), we calculate d
dx

(log fg).
We get

d

dx
(log fg) =

d
dx

(fg)

fg
,

but on the other hand

d

dx
(log fg) =

d

dx
(log f + log g) =

f ′

f
+
g′

g
.

Solving we get

d

dx
(fg) = (

f ′

f
+
g′

g
)fg = f ′g + g′f.

The same idea works for arbitrarily long products and quotients.

Exercises for Section 3.8

1. Let f be a twice continuously differentiable function
on the real line with f ′(x) > 1 for every value of x
and |f ′′(x)| ≤ 1 for every value of x. Let x0 be a real
number with f(x0) < 1

2 and for each natural num-
ber j let xj be the result of the jth step of Newton’s
method. What is the smallest value of j for which
you can guarantee that

|f(xj)| ≤ 10−100.



Chapter 4

Integration

♦ 4.1 Definition of the Riemann integral

Our goal for today is to begin work on integration. In particular, we would
like to define

∫ b
a
f(x)dx, the definite Riemann integral of a function f on the

interval [a,b]. Here f should be, at least, defined and bounded on [a,b].

Informally, the meaning we would like to assign to
∫ b
a
f(x)dx is area under

the curve y = f(x) between the vertical lines x = a and x = b. But we’ll have
to come to terms with understanding what that means, and having at least
some idea about which curves have a well defined area under them.

Classically, we understand what is the area of a rectangle and not much else.
(Parallelograms are rectangles with the same triangle added and subtracted.
Triangles are half-parallelograms. The areas of all these objects are built up
from area of a rectangle.) Our idea will be that we will study certain unions
of disjoint rectangles contained in the region under the curve, whose areas we
will call lower Riemann sums, and we will study unions of disjoint rectangles
covering the region, whose areas we will call upper Riemann sums, and our
integral will be defined when we can squeeze the area of the region tightly
between the upper and lower sums. Warning: Being able to do this will put
some restrictions on f .

Given an interval [a,b], a partition P of [a,b] is a set of points {x0, . . . ,xn}
so that

x0 = a < x1 < x2 · · · < xn−1 < xn = b.

We say a partition Q refines the partition P provided that

P ⊂ Q,

that is provided every point of P is also a point of Q.

Given a partition P of [a,b] and f a bounded function on [a,b], we define

UP(f) =
n∑
j=1

l.u.b.{f(x) : xj−1 ≤ x ≤ xj}(xj − xj−1),

92
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the Riemann upper sum of f with respect to the partition P .

Given a set A of real numbers bounded below, we define its g.l.b. (greatest
lower bound) by

g.l.b.(A) = −l.u.b.(−A),

where −A is the set of negatives of elements of A. If A is bounded below then
g.l.b(A) is defined because the negative of a lower bound for A is an upper
bound for −A.

Now, we define

LP(f) =
n∑
j=1

g.l.b.{f(x) : xj−1 ≤ x ≤ xj}(xj − xj−1),

the Riemann lower sum of f with respect to the partition P .

We record some facts about Riemann upper and lower sums.

Claim Let P = {x0,x1, . . . ,xn} be a partition of [a,b] and let Q be a
partition which refines P then for any bounded f defined on [a,b], we have

LP(f) ≤ LQ(f) ≤ UQ(f) ≤ UP(f).

Proof of claim We observe that for every pair of adjacent points of P ,
namely xj−1,xj, the subset Q[xj−1,xj ] consisting of points in Q contained in
[xj−1,xj] is a partition of [xj−1,xj]. It suffices to show that

g.l.b.{f(x) : xj−1 ≤ x ≤ xj}(xj − xj−1) ≤ LQ[xj−1,xj ]
≤ UQ[xj−1,xj ]

≤ l.u.b.{f(x) : xj−1 ≤ x ≤ xj}(xj − xj−1).

This is true because the g.l.b.’s in the definition of LQ[xj−1,xj ]
are all larger

than or equal to the g.l.b. on all of [xj−1,xj] which in turn are smaller than or
equal to the respective l.u.b.’s which are smaller than or equal to the l.u.b. on
all of [xj−1,xj]. Now we just sum our inequalities over j to obtain the desired
inequalities.

Corollary of claim Let P and Q be any partitions of [a,b] then for any
bounded f on [a,b],

LP(f) ≤ UQ(f).

Proof of corollary Clearly P ∪ Q refines both P and Q. We simply use
the claim to show that

LP(f) ≤ LP∪Q(f) ≤ UQ(f).
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Thus we have obtained that the set of all lower Riemann sums of a bounderd
function on [a,b] are bounded above, and we denote

l.u.b.{LP(f)} = Il,[a,b](f),

where the l.u.b. is taken over all partitions of [a,b]. We call Il,[a,b](f) the lower
integral of f on [a,b].

Similarly the upper sums are all bounded below. We denote

g.l.b.{UP(f)} = Iu,[a,b](f),

where the g.l.b. is taken over all partitions of [a,b]. We call Iu,[a,b](f) the upper
integral of f on [a,b].

When these two numbers Il,[a,b](f) and Iu,[a,b](f) are equal, we say that f
is Riemann integrable on [a,b] and we call this common number∫ b

a

f(x)dx.

Warning example

Let f(x) be defined on [0,1] by

f(x) = 1if

x ∈ Q; 0 if x /∈ Q.

It is easy to see that any upper sum of f on [0,1] is 1 and any lower sum
is 0. The function f is not Riemann integrable. There are more sophisticated
integrals that can handle this f [ I’m looking at you, Lebesgue!!] but no system
of integration will work on any function.

We record some basic properties of Riemann integration:

Theorem Let f,g be Riemann integrable on [a,b] and c1,c2,c, and k 6= 0
be numbers.

(i)

∫ b

a

c1f + c2g = c1

∫ b

a

f + c2

∫ b

a

g

(ii)

∫ b

a

f(x)dx =

∫ b+c

a+c

f(x− c)dx.

(iii)

∫ b

a

f(x)dx =
1

k

∫ kb

ka

f(
x

k
)dx.
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If for every x ∈ [a,b], we have g(x) ≤ f(x) then

(iv)

∫ b

a

g(x)dx ≤
∫ b

a

f(x)dx

If c ∈ [a,b],

(v)

∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx.
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We proceed to prove the parts of the theorem.

Proof of (i) We let P be any partition of [a,b]. We restrict to the case
that c1,c2 are nonnegative. We see that

UP(c1f + c2g) ≤ c1UP(f) + c2UP(g),

since the maximum (or near maximum) in every subinterval of the partition
may occur at different points for f and g. Similarly

c1LP(f) + c2LPg ≤ LP(c1f + c2g).

Taking respectively l.u.b and g.l.b., we get

Iu,[a,b](c1f + c2g) ≤ c1

∫ b

a

f + c2

∫ b

a

g,

and

Il,[a,b](c1f + c2g) ≥ c1

∫ b

a

f + c2

∫ b

a

g.

Since
Il,[a,b](c1f + c2g) ≤ Iu,[a,b](c1f + c2g),

we have shown that c1f + c2g is Riemann integrable and that (i) holds. To
get the full power of (i), we must consider negative c1 and c2. It is enough to
show that if f is integrable on [a,b] then so is −f . We see immediately that

Iu,[a,b](f) = −Il,[a,b](−f),

and
Il,[a,b](f) = −Iu,[a,b](−f).

Thus −f is integrable with integral −
∫ b
a
f .

Proof of (ii) We see that any partition P of [a,b] can be transformed to
a partition P + c of [a+ c,b+ c] (and vice versa) and we see that

UP(f(x)) = UP+c(f(x− c)).

and
LP(f(x)) = LP+c(f(x− c)).

Proof of (iii) Similarly, We see that any partition P of [a,b] can be trans-
formed to a partition kP of [ka,kb] (and vice versa) and we see that

UP(f(x)) =
1

k
UkP(f(

x

k
)).

and

LP(f(x)) =
1

k
LkP(f(

x

k
).
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Proof of (iv) We see that for any partition P of [a,b],

UP(g(x)) ≤ UP(f(x)).

It suffices to take g.l.b of both sides.

Proof of (v) We simply observe that any P which is a partition for [a,b]
can be refined to a union of a partition P1 of [a,c] together with a partition
P2 of [c,b] simply by adding the point c. We conclude

LP(f) ≤ LP1(f) + LP2(f) ≤ UP1(f) + UP2(f) ≤ UP(f).

Exercises for Section 4.1

1. Let f be bounded and integrable on [a,b]. Define the

partition PN = {a,a+ b−a
N , . . . ,a+ j(b−a)

N , . . . ,b}, the
division of [b,a] into N equally sized intervals. Let

xj = a+ j(b−a)
n be the right endpoint of the jth in-

terval, and define the right Riemann sum RN (f) =∑N
j=1 f(xj)

b−a
N . a). Show that for any N , we have

LPN (f) ≤ RN (f) ≤ UPN (f). b). Let P be any fixed
partition of [a,b]. Show that limN−→∞ UPN (f) ≤
UP(f), and limN−→∞ LPN (f) ≥ LP(f). c). Con-
clude that limN−→∞ LPN (f) and limN−→∞ UPN (f)

both converge to
∫ b
a
f(x)dx. d). Use the squeeze

theorem to see that limN−→∞RN (f) =
∫ b
a
f(x)dx.

2. Prove directly from the definition that
∫ 1

0
x2dx = 1

3 .
Hint: Partition [0,1] into N equally spaced intervals
and use what you know from section 1.1 about the
sum of the first N squares. Obtain a lower bound
on the lower integral and an upper bound on the
upper integral.

3. We say that a function f is uniformly continuous
on a set A of reals if for every ε > 0 there is a
δ > 0 so that if x,y ∈ A with |x − y| < δ, one has
|f(x)−f(y)| < ε. Let f be a continuous function on
the interval [0,1]. Show that f is uniformly continu-
ous. Hint: Fix x. From the definition of continuity,
show that for every ε > 0 there is δ(x) > 0 with
|x − y| < δ(x) implying |f(x) − f(y)| < ε. Pick
δ(x) as large as possible. If there is a positive lower
bound for all the values of δ(x), then you are done.
Otherwise, there is a sequence {δ(xj)} tending to
0. Pick a subsequence of {xj} tending to a point
x (using Bolzano-Weierstrass). Show that f is not
continuous at x.

4. Let f be a continuous function on [0,1]. In light of
the previous problem, it is also uniformly continu-
ous. Let PN = {0, 1N , . . . ,

N−1
N ,1}. Show that

lim
N−→∞

LPN (f) = lim
N−→∞

UPN (f) =

∫ 1

0

f(x)dx.

5. Use the definition of the integral to calculate∫ 3

1

x2dx.

DO NOT USE THE FUNDAMENTAL THEOREM
OF CALCULUS. Hint: Find upper and lower sums
arbitrarily close to the integral. You might need the
formula

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

6. Use the definition of the integral to calculate∫ 2

1

exdx.

DO NOT USE THE FUNDAMENTAL THEOREM
OF CALCULUS. Hint: Use the formula for the sum
of a finite geometric series. You might need to com-
pute something like

lim
n−→∞

1
n

e
1
n − 1

.

You can either use the definition of e or the Taylor
series expansion for e

1
n . They are basically the same

thing.
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♦ 4.2 Integration and uniform continuity

We could write the definition of continuity as follows: A function f is contin-
uous at x if for every ε > 0 there exists a δ > 0 so that if |x − y| < δ then
|f(x)− f(y)| < ε. (This is the same as saying that

lim
y−→x

f(y) = f(x),

which is how we originally defined continuity.)

One weakness of the above definition (as something that can be applied)
is that the number δ depends not just on ε and f , but also on x. When we
try to prove that a function is integrable, we want to control the difference
between upper and lower sums. To do this, it would help to have the same
δ for a given ε work at all choices of x in a particular interval. With this in
mind, we make a new definition.

We say a function f on the interval [a,b] is uniformly continuous if for
every ε > 0, there is δ > 0 so that whenever |x − y| < δ, we have that
|f(x)− f(y)| < ε.

The definition of uniform continuity looks very similar to the definition of
continuity. The difference is that in the uniform definition, the point x is not
fixed. Thus uniform continuity is a stronger requirement than continuity. We
now see why uniform continuity is useful for integration.

Theorem A function f on [a,b] which is uniformly continuous is Riemann
integrable on [a,b].

Proof For every ε > 0, there is δ > 0 so that when x,y ∈ [a,b] and
|x− y| < δ then |f(x)− f(y)| < ε.

We now relate the inequality to Riemann sums. Let I ⊂ [a,b] be an interval
of length less than δ. We can see that

l.u.b.x∈If(x)− g.l.b.x∈If(x) < ε.

Therefore, for any partition P of [a,b] all of whose intervals are shorter
than δ, we have

UP(f)− LP(f) < ε(b− a).

Since this is true for every ε > 0, it means that

Iu,[a,b](f) = Il,[a,b](f).

So f is integrable on [a,b].
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When does it happen that f is uniformly continuous on [a,b]? Here’s an
easy if restrictive condition.

Proposition Let f(x) be continuous on [a,b] and differentiable at every
point of [a,b]. Suppose that f ′ is continuous on [a,b]. Then f is uniformly
continuous on [a,b].

Proof Since f ′(x) is continuous on [a,b] so is its absolute value |f ′(x)| and
we may use the extreme value theorem to see that there is a number K so that

|f ′(x)| ≤ K,

for every x in the interval [a,b].
Now choose δ = ε

K
. Suppose x,y ∈ [a,b] with x < y and y − x < δ. We

apply the mean value theorem on [x,y] to obtain

|f(x)− f(y)|
= |f ′(c)||x− y|
< δK = ε,

where c ∈ [x,y]. Thus we shown uniform continuity.

What is nice about the proposition if that δ depends just on ε and the
maximum of the derivative. This gives an easy way to predict, say, how many
pieces we have to partition an interval into to get a Riemann sum giving a good
approximation for the integral. It’s really a very quantitative result. However
if all we want is a qualitative result: is f integrable, all this information about
the derivative is overkill.

Theorem Let f be continuous on [a,b] then f is uniformly continuous on
[a,b].

Proof Fix ε > 0. For every x, let δ(x) be the largest δ that works for ε
and x in the definition of continuity. More precisely:

δ(x) = l.u.b.{δ : δ ≤ b− a and when|x− y| < δ,|f(y)− f(x)| < ε}

The function δ(x) > 0. Also, the function δ(x) is continuous (why? Exercise
to the reader! It’s basically problem 4.1.3) By the extreme value theorem, this
means that δ(x) has a minimum on [a,b]. Hence, f is uniformly continuous.

What we get from this is that every continuous function on a closed interval
is Riemann integrable on the interval. That’s a lot of functions. But, in
fact, many more functions are integrable. For instance, a function f on [a,b]
having finitely many points of discontinuity at which all the left and right
limits exist and are finite is also integrable. You see this by restricting to
partitions containing the points of discontinuity. An exhaustive description of
all Riemann integrable function is (slightly) beyond the scope of this course.

Exercises for Section 4.2
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1. Let f be a function on the reals whose derivative
f ′ is defined and continuous on [a,b]. Let PN and
RN (f) be as in problem 4.1.1. a) Observe using the
Extreme Value theorem that there is a real number
M so that |f ′(x)| ≤M for every x in [a,b]. b) See us-
ing the Mean Value theorem that if x,y ∈ [a,b] with
|x − y| ≤ ε

M , where M is the constant in part a),
that |f(x)−f(y)| ≤ ε. c) Show directly using part b)

that |RN (f) − UPN (f)| ≤ M(b−a)2
N . Similarly show

that |RN (f) − LPN (f)| ≤ M(b−a)2
N . d) Conclude

using part c) that |RN (f)−
∫ b
a
f(x)dx| ≤ M(b−a)2

N .

♦ 4.3 The fundamental theorem

Differentiation and integration are not unrelated, which is why calculus is a
subject. As their names suggest, in a certain sense, they are opposites. We
will be precise about what sense in what follows as we state and prove two
forms of the fundamental theorem of calculus.

Theorem (Fundamental theorem of Calculus, version 1) Let F
be a continuous function on the interval [a,b]. Suppose F is differentiable
everywhere in the interion of the interval with derivative f which is Riemann
integrable. Then ∫ b

a

f(x)dx = F (b)− F (a).

Proof Let

P = {x0,x1, . . . ,xn}

be any partition of [a,b]. We now apply the mean value theorem to F on each
subinterval [xj−1,xj]. We conclude that there is cj ∈ (xj−1,xj) so that

F (xj)− F (xj−1) = f ′(cj)(xj − xj−1).

Now we sum over j. We obtain

n∑
j=1

F (xj)− F (xj−1) =
n∑
j=1

f ′(cj)(xj − xj−1).

The key points here are that the left hand side telescopes and the right hand
side is a Riemann sum (though probably neither upper nor lower.) Thus

F (b)− F (a) =
n∑
j=1

f ′(cj)(xj − xj−1),
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from which we conclude

LP(f) ≤ F (b)− F (a) ≤ UP(f).

Since we assumed that f is integrable, we can obtain
∫ b
a
f(x)dx both as

l.u.bLP(f) and as g.l.b.UP(f). Thus we obtain∫ b

a

f(x)dx ≤ F (b)− F (a) ≤
∫ b

a

f(x)dx.

Therefore ∫ b

a

f(x)dx = F (b)− F (a),

as desired.

Theorem (Fundamental theorem of Calculus, version 2) Let f be
continous on [a,b] and let

F (x) =

∫ x

a

f(y)dy.

Then F ′(x) = f(x).

Proof We calculate

F ′(x) = lim
h−→0

1

h

∫ x+h

x

f(y)dy.

Since f is continuous, for any ε > 0, there exists δ > 0 so tha |y − x| < δ, we
have |f(y)− f(x)| < ε. Thus if we pick h < δ, we have

|
∫ x+h

x

f(y)dy − hf(x)| <
∫ x+h

x

εdy = εh.

Thus

|1
h

∫ x+h

x

f(y)du− f(x)| < ε.

We have shown that the limit in h converges to f(x).

An immediate consequence is that know the value of a sufficiently nice
function at one point and knowing its derivative everywhere is enough to define
the function.

Corollary Let F be a function which has a continuous derivative f on an
interval [a,b]. Then

F (x) = F (a) +

∫ x

a

f(y)dy.

Another application of the fundamental theorem is that we may apply rules
for differentiation to integration. We use the chain rule to obtain:
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Theorem (Change of variables formula) Let f be integrable on an
interval [a,b]. Let g(x) be a differentiable function taking the interval [c,d] to
the interval [a,b] with g(c) = a and g(d) = b. Then∫ b

a

f(x)dx =

∫ d

c

f(g(x))g′(x)dx.

Proof Let F be the antiderivative of f . We may obtain F by

F (x) =

∫ x

a

f(y)dy.

Then clearly ∫ b

a

f(x)dx = F (b)− F (a).

On the other hand, clearly by the chain rule, f(g(x))g′(x) is the derivative of
F (g(x)). Thus∫ d

c

f(g(x))g′(x)dx = F (g(d))− F (g(c)) = F (b)− F (a).

We have shown the two integrals are equal.

In a high school calculus course, the change of variables formula is usually
presented as substitution. We substitute u = g(x). Then du = g′(x)dx. And
we can get from one integral to another. In effect, the change of variables
formula justifies the notation dx. We don’t know what the differential is, but
it follows the right rules. You will hear more along these lines in Math 1c.

I wanted to end today by discussing improper integrals and an application.
If f is bounded and integrable on all intervals of nonnegative reals, we can
define ∫ ∞

0

f(x)dx = lim
y−→∞

∫ y

0

f(x)dx.

Similarly, if f is bounded and integrable on all intervals [a,y] with y < b, we
can define ∫ b

a

f(x)dx = lim
y−→b

∫ y

a

f(x)dx.

These integrals are called improper and only converge if the limit defining
them converges.

As an application of the notion of improper integrals, we obtain a version
of the integral test for convergence of series.

Theorem Let f be a decreasing, nonnegative function of the positive reals.
Then

∞∑
j=1

f(j)
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converges if ∫ ∞
1

f(x)dx,

converges. Further,
∞∑
j=1

f(j)

diverges if ∫ ∞
1

f(x)dx,

diverges.
Proof Simply observe that the series is bounded below by

∫∞
1
f(x)dx and

that the series
∑∞

j=2 f(j) is bounded above by the same integral.

As an example, we consider series like
∑

1
n logn

and
∑

1
n(logn)2

. I haven’t
specified the starting point of the sum so that there are no zeroes in the
denominator.

We should compare to ∫
dx

x log x

and ∫
dx

x(log x)2
.

We make the substitution u = log x and du = dx
x

. Then the integrals
become ∫

du

u
,

and ∫
du

u2
.

How do these substitutions compare to the term grouping arguments made
previously?

Exercises for Section 4.3

1. Let f(x) be a continuous function on [a,b]. Define
F (x) on [a,b] by F (x) =

∫ x
a
f(y)dy. Prove for any

c ∈ (a,b) that F ′(c) = f(c). Hint: Calculate the
limit directly. Use the continuity of f at c.

2. Prove that

∞∑
n=2015

1

n log n log(log n)

diverges.

3. [Integration by Parts] Let f(x) and g(x) be func-
tions which are once continuously differentiable on
the interval [a,b]. Show that∫ b

a

f(x)g′(x)dx = −
∫ b

a

f ′(x)g(x)dx+f(b)g(b)−f(a)g(a).
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4. Let g(x) be a function which is continuous on the
whole real line. Let k(x,t) be a function of two vari-
ables so that for each fixed value of x, the function
k(x,t) is continuous as a function of t on the whole
real line. Suppose further that for each fixed value
of t, the function k(x,t) is continuously differentiable
as a function of x. Show that

f(x) =

∫ x

0

k(x,t)g(t)dt,

is defined at every positive real x. Show that f is in
fact differentiable at every positive real x by writing
down and proving a formula for f ′(x). (Hint: If in
doubt, write out the derivative as a limit.)

♦ 4.4 Taylor’s theorem with remainder

Some time ago, we proved

Theorem Let f be a function on an interval [a,b] and c a point in the
interior of the interval. Suppose that f is n−2 times continuously differentiable
on [a,b], that the n − 1st derivative of f exists everywhere on the interior of
(a,b) and that the nth derivative of f exists at c. Then

f(x) = f(c) + f ′(c)(x− c) + · · ·+ f (n)(c)

n!
(x− c)n + o((x− c)n).

The expression in the Theorem, f(c) + f ′(c)(x − c) + · · · + f (n)(c)
n!

(x −
c)n is referred to as the nth Taylor polynomial of f at c. It is, of course, a
polynomial of degree n which approximates f at c. We know that the error
is o((x − c)n) so that it is getting small quite fast as x approaches c. But, of
course, the definition of o(.) involves a limit, and we don’t know how fast that
limit converges. We will rectify this now, obtaining a more concrete estimate
on the error in good cases. We will need to use integration by parts.

Lemma Let f and g be once continuously differentiable functions on the
interval [a,b] then∫ b

a

(f ′(x)g(x) + f(x)g′(x))dx = f(b)g(b)− f(a)g(a).

Proof Just apply the product rule to convert the integral to∫ b

a

d

dx
(f(x)g(x))dx,
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and apply the fundamental theorem of calculus.

Theorem (Taylor’s theorem with remainder) Assume f is n+1 times
continuously differentiable in the interval [a,b] having c in the interior. Then
for every x ∈ [a,b] we have

f(x) =
n∑
j=0

f (j)(c)

j!
(x− c)j +Rn(x),

with

Rn(x) =
1

n!

∫ x

c

(x− y)nf (n+1)(y)dy.

Here the expression Rn(x) is referred as the remainder in the nth Taylor
approximation of f at a.

Proof We will prove this, of course, by induction. The base case, n = 0
is nothing more than the fundamental theorem of calculus, so we will assume
that

Rn(x) =
1

n!

∫ x

c

(x− y)nf (n+1)(y)dy,

and we will try to calculate Rn+1 under the assumption that f has n + 2
continuous derivatives. We observe that as long as the result holds

Rn+1(x) = Rn(x)− f (n+1)(c)

(n+ 1)!
(x− c)n+1.

Now we combine this with the induction hypothesis, taking the n + 1 factor
from the denominator to turn (x− c)n+1 into an integral from c to x, namely
(x−c)n+1

n+1
=
∫ x
c

(x− y)ndy

Rn+1(x)

=
1

n!

∫ x

c

(x− y)nf (n+1)(y)dy − f (n+1)(c)

n!

∫ x

c

(x− y)ndy

=
1

n!

∫ x

c

(x− y)n(f (n+1)(y)− f (n+1)(c))dy

=
1

(n+ 1)!

∫ x

c

(x− y)n+1f (n+2)(y)dy.

Here, the last is by integration by parts. We integrate (x − y)n and dif-
ferentiate f (n+1)(y) − f (n+1)(c). Note that the boundary terms vanish since
(x− y)n vanishes at y = x and f (n+1)(y)− f (n+1)(c) vanishes at y = c.

Having this remarkable formula for Rn, we look for a way to apply it. We
first write down a general result about integrals of continuous functions which
is in analogy with the mean value theorem.
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Theorem (Mean Value theorem for integrals) Let f and g be con-
tinuous functions on [a,b]. Assume that g never changes sign on [a,b]. Then
there is c ∈ (a,b) so that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

Proof Let

M =

∫ b
a
f(x)g(x)dx∫ b
a
g(x)dx

.

Suppose that every on (a,b), we have that f(x) < M . Then∫ b

a

f(x)g(x)dx < M

∫ b

a

g(x)dx,

which is a contradiction.
Similarly, it is not the case that f(x) > M for every x in (a,b). Then since

f is continuous, by the intermediate value theorem, there must be c so that
f(c) = M .

We now apply this mean value theorem for integrals to our expression for
the remainder in Taylor’s approximation.

Rn(x) =
1

n!

∫ x

c

(x− y)nf (n+1)(y)dy.

Observe that

1

n!

∫ x

c

(x− y)ndy =
1

(n+ 1)!
(x− c)n+1.

Thus we observe that there is some d between c and x so that

Rn(x) =
f (n+1)(d)(x− c)n+1

(n+ 1)!
.

We conclude

f(x) =
n∑
j=0

f (j)(c)

j!
(x− c)j +

f (n+1)(d)(x− c)n+1

(n+ 1)!
.

If, as last time, we begin with an a priori estimate for the (n+ 1)st deriva-
tive, we obtain an estimate for the error term.

Exercises for Section 4.4
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1. Let I =
∫ 1

0
1+x2014

1+x10000 dx. Show that I = 1 + c
2015 for

some 0 < c < 1. Hint: Observe that 1 < 1+x2014

1+x10000 <

1 + x2014 whenever 0 < x ≤ 1.

2. Let 0 < x < 1. Let f(x) = 1
1−x . Write down an

explicit expression for R2(x) as a rational function.
Show directly from this expression that R2(x) =
1
6f

(3)(d)x3, for some 0 < d < x. Solve for d in
terms of x.

♦ 4.5 Numerical Integration

We have developed the fundamental theorem of Calculus which allows us to
calculate explicitly many integrals, the integrals of traditional calculus. The
idea is that there is a library of functions, the elementary functions which
we should feel free about using, and as long as a function has an elementary
function as an antiderivative, we may compute its integral. An example is the
function ex

2
. It is viewed as elementary because ex is elementary and x2 is

elementary and the class of elementary function is closed under composition.

Now the function e−x
2

certainly has an antiderivative. Because e−x
2

is
continuous on any closed interval, it is uniformly continuous on the interval
and so, it is integrable. Thus for any y, we may define∫ y

0

e−x
2

dx.

By simply setting

F (y) =

∫ y

0

e−x
2

dx,

we have defined an antiderivative for e−x
2
. This function is important. In

fact, it shows up in many basic applications in probability. But this function
F (y) is not elementary, in the sense that we can’t build it up by addition,
multiplication, and composition from our library of simpler functions and we
don’t a priori have a good approach to computing it, except through the
definition of integration. We can write down a lower sum and an upper sum
for the integral with respect to some partition and this gives us a range in
which the value of the function is contained.

The purpose of today’s lecture is to study and compare different methods
of approximating an integral ∫ b

a

f(x)dx.

Given a method of approximation, our goal will be to study how big is the error.
We will make some assumptions about our function f . It will be infinitely
continuously differentiable, but for each method of integration, we will only
make use of a few derivatives. We will assume that all the derivatives we use are
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bounded by a constant M on the interval [a,b]. (When we change the number
of derivatives we use for a given function, we may have to give something up in
the constant M . We now describe various methods of numerical integration.

The sloppy method
We partition our interval [a,b] into equally spaced subintervals using the

partition

P = {a,a+
(b− a)

n
,a+

2(b− a)

n
, . . . ,a+

j(b− a)

n
, . . . ,a+

(n− 1)(b− a)

n
,b}.

Now for each subinterval Ij = [a+ (j−1)(b−a)
n

,a+ j(b−a)
n

], we pick a point cj ∈ Ij.
We evaluate

J1 =
n∑
j=1

(
(b− a)

n
)f(cj).

This is a Riemann sum corresponding to the choice of points cj. What can we
say a priori about how close the quantity J1 is to the the integral?

We let x ∈ Ij. We will use only the first derivative of f and assume that
it is everywhere less than M . By the mean value theorem, we know that

|f(x)− f(cj)| ≤M |x− cj| ≤
M(b− a)

n
.

Thus we estimate

|
∫ a+

j(b−a)
n

a+
(j−1)(b−a)

n

f(x)dx− f(cj)
(b− a)

n
| ≤ M(b− a)2

n2
.

Using the triangle inequality and the fact we have subdivided [a,b] into n
intervals, we get

|
∫ b

a

f(x)dx− J1| ≤
M(b− a)2

n
.

The key thing to take away about this estimate on the error |
∫ b
a
f(x)dx− J1|

is that it is O( 1
n
). Most of our work is in evaluating the function n times and

we obtain an error estimate for the integral which is O( 1
n
). Can we do any

better?
From this point on, we will give up on explicit estimates in terms of M in

favor of asymptotic estimates.

The midpoint method

The midpoint method is the very best version of the sloppy method. Here
we take cj to be the midpoint of Ij namely

mj = a+
(j − 1

2
)(b− a)

n
.
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We define

J2 =
n∑
j=1

(
(b− a)

n
)f(mj).

The key point will be that for any x ∈ Ij, we have the estimate

f(x) = f(mj) + f ′(mj)(x−mj) +O((x−mj)
2),

by, for instance, Taylor’s approximation to order 2. Next we observe that∫ a+
j(b−a)
n

a+
(j−1)(b−a)

n

(f(mj) + f ′(mj)(x−mj))dx = f(mj)(
b− a
n

).

Thus

|
∫ a+

j(b−a)
n

a+
(j−1)(b−a)

n

f(x)dx− f(mj)(
b− a
n

)| = b− a
n

O((
b− a
n

)2).

Thus we obtain, after summing in n that

|J2 −
∫ b

a

f(x)dx| = O(
1

n2
).

It pays to pick the midpoint.

Simpson’s rule

We now present a method of integration of a slightly different type that
beats the midpoint rule. To simplify our notation we let

xj = a+
j(b− a)

n
,

be the typical point of the partition. As before, we let

mj =
xj−1 + xj

2

We let

J3 =
n∑
j=1

f(xj−1) + 4f(mj) + f(xj)

6
(
b− a
n

).

To understand why J3 is a good estimate for the integral
∫ b
a
f(x)dx, we make

the following observation.

Claim Let I = [xl,xr] be any interval and let q(x) be a quadratic polyno-
mial on I. Let xm be the midpoint of I. Then∫ xr

xl

q(x)dx =
xr − xl

6
(q(xl) + 4q(xm) + q(xr)).
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Proof of claim It suffices to prove this for the interval [−h,h], since we
can move any interval to this by shifting the midpoint to 0 (and that operation
preserves quadraticness.) We calculate∫ h

−h
(cx2 + dx+ e)dx =

2

3
ch3 + 2eh.

We observe that this is exactly what the claim predicts.

Using the claim, we invoke the fact that on each interval Ij, we have

f(x) = f(mj) + (x−mJ)f ′(mj) + (x−mj)
2f
′′(mj)

2
+O((x−mj)

3).

That is each function that is three times differentiable has a good quadratic
approximation on each integral. We use the claim to estimate difference be-
tween the jth term in the sum for J3 and the part of the integral from xj−1 to
xj by b−a

n
O(( 1

n
)3). We conclude, at last, that

|J3 −
∫ b

a

f(x)dx| = O(
1

n3
).
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Exercises for Section 4.5

1. Define the Trapezoid rule as follows. With notation
as in the text, let

J4 =

n∑
j=1

f(xj−1) + f(xj)

2

b− a
n

.

a) Let f(x) be a quadratic function, f(x) = cx2 +
dx+e. Give an explicit expression for the difference

between J4 and
∫ b
a
f(x)dx. b) Do the same analysis

with a quadratic f for J2, the error obtained from
the midpoint rule. c) Compare a) and b). Derive
Simpson’s rule as an exact method of integrating
quadratics.

2. Apply Simpson’s rule to a cubic function f(x) =
cx3 + dx2 + ex+ f . Calculate an explicit expression
for the error. What can you conclude about the
accuracy of Simpson’s rule for general functions?

3. Suppose you are given that a function q(x) on the
interval [10,22] satisfies

q(10) = 1, q(13) = 3, q(16) = 7, q(19) = 15, q(22) = 20.

Suppose you are given further that q(x) is a polyno-
mial of degree 4 (also called a quartic polynomial.)
Write down explicitly, the Taylor series for q cen-
tered at 16.

4. Find a formula giving the integral
∫ 1

−1 q(x)dx of a

general quartic polynomial q(x) = ax4 +bx3 +cx2 +
dx + e in terms of the values of q at −1,−12 ,0,

1
2 ,1.

Use this to define a numerical integration method
for functions with six continuous derivatives. What
is the order of the error for this method of differen-
tiation?
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Convexity

♦ 5.1 Convexity and optimization

We say that if f is a once continuously differentiable function on an interval
I, and x is a point in the interior of I that x is a critical point of f if

f ′(x) = 0.

Critical points of once continuously differentiable functions are important be-
cause they are the only points that can be local maxima or minima.

In the context of critical points, the second derivative of a function f is
important because it helps in determining whether a critical point is a local
maximum of minimum.

First derivative test Let f be a once continuously differentiable function
on an interval I and let x be a critical point. Suppose there is some open
interval (a,b) containing x so that for y ∈ (a,b) with y < x, we have f ′(x) > 0
and so that for y ∈ (a,b) with y > x, we have f ′(x) < 0, then f has a local
maximum at x. If on the other hand, we have f ′(y) < 0 when y ∈ (a,b) and
y < x and f ′(y) < 0 when y ∈ (a,b) and y > x then f has a local minimum at
x.

Proof of First derivative test We prove the local maximum case. Sup-
pose y ∈ (a,b) with y 6= x and f(y) ≥ f(x). If y < x, by the mean value
theorem, there is some c with y < c < x so that

f(x)− f(y)

x− y
= f ′(c).

We know, by assumption, that f ′(c) > 0. Thus f(x) > f(y) which is a
contradiction. Suppose instead that x < y. Then there is c with x < c < y so
that

f(x)− f(y)

x− y
= f ′(c),

and by assumption f ′(c) < 0. Then (since x− y is now negative), we still get
f(x) > f(y), a contradiction. We can treat the minimum case similarly.

112
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Note that under these assumptions, we actually have that x is the unique
global maximum (or minimum) on the interval [a,b]. Intuitively, this says we
get a maximum if f is increasing as we approach x from the left and decreasing
as we leave x to the right.

From the First derivative test, we easily obtain:

Second derivative test Let f be a once continuously differentiable func-
tion. Let x be a critical point for f . If f is twice differentiable at x and
f ′′(x) < 0 then f has a local maximum at x. If f is twice differentiable at x
and f ′′(x) > 0 then f has a local minimum at x.

Proof of the second derivative test It suffices to treat the maximum
case as the minimum case proceeds similarly. By the definition of the deriva-
tive, we have

f ′(y) = f ′(x) + f ′′(x)(y − x) + o(y − x).

Since f ′′(x) < 0, there must be a small interval around x, so that to the left
of x, we have f ′ positive and to the right, it is negative. We apply the first
derivative test.

All of this is closely related to the notion of convexity and concavity.

Definition A function f(x) is concave if it lies above all its secants. Pre-
cisely f is concave if for any a,b,x with x ∈ (a,b), we have

f(x) ≥ b− x
b− a

f(a) +
x− a
b− a

f(b).

We say f is strictly concave if under the same conditions

f(x) >
b− x
b− a

f(a) +
x− a
b− a

f(b).

Similarly f is convex if it lies below all its secants. Precisely f is convex if for
any a,b,x with x ∈ (a,b), we have

f(x) ≤ b− x
b− a

f(a) +
x− a
b− a

f(b).

We say f is strictly convex if under the same conditions

f(x) <
b− x
b− a

f(a) +
x− a
b− a

f(b).

Theorem Let f be twice continuously differentiable. Then f is concave if
and only if for every x, we have f ′′(x) ≤ 0, and convex if and only if for every
x, we have f ′′(x) ≥ 0.
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We will leave the proof of the theorem as an exercise but indicate briefly
why this is true locally. If f ′′(x) ≤ 0, we have

f(y) = f(x) + f ′(x)(y − x) +
f ′′(x)

2
(y − x)2 + o((y − x)2).

We observe that for a,b close to x, if f ′′(x) < 0, we have that (a,f(a)) and
(b,f(b)) are below the tangent line to the graph of f at x. Thus the point
(x,f(x)) which is on the tangent line is above the secant between (a,f(a)) and
(b,f(b)).

Concavity has a lot to do with optimization.
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Example: Resource allocation problems

Let f and g be two functions which are continuous on [0,∞) and twice
continuously differentiable with strictly negative second derivative on (0,∞).
Let t be a fixed number.

Consider
W (x) = f(x) + g(t− x).

[Interpretation: You have t units of a resource and must allocate them between
two productive uses. The function of W might represent the value of allocating
x units to the first use and t − x units to the second use. The concavity
represents the fact that each use has diminishing returns.]

Under these assumptions, if W (x) has a critical point in (0,t), then the
critical point is a maximum.

If, in addition,
lim
x−→0

f ′(x) =∞,

and
lim
x−→0

g′(x) =∞,

then we are guaranteed that W (x) has a unique maximum in [0,t]. This is
because

lim
x−→0

W ′(x) =∞,

and
lim
x−→t

W ′(x) = −∞.

By the intermediate value theorem, there is a zero for W ′(x) in (0,t). It is
unique since W ′(x) is strictly decreasing.

Strictly concave functions on (0,∞) whose derivative converge to ∞ at 0
are ubiquitous in economics. We give an example.

Cobb-Douglas Production function:

The Cobb-Douglas production function gives the output of an economy as
a function of its inputs (labor and capital).

P (K,L) = cKαL1−α.

Here c is a positive constant and α a real number between 0 and 1. The
powers of K and L in the function have been chosen so that

P (tK,tL) = tP (K,L).

That is, if we multiply both the capital and the labor of the economy by t,
then we multiply the output by t. Note that if we hold L constant and view
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P (K,L) as a function of K, then we see this function is defined on (0,∞) is
strictly concave with derivative going to ∞ at 0.

An important principle of economics is that we should pay for capital at
the rate of the marginal product of capital. We find this rate by taking the
derivative in K and getting αcKα−1L. Since we need K units of capital to
get the economy to function we pay αcKαL1−α. In this way, we see that α
represents the share of the economy that is paid to the holders of capital and
1− α is the share paid to the providers of labor.

Another way in which optimization can be applied is to prove inequalities.

Arithmetic Geometric mean inequality Let a and b be positive num-
bers then

a
1
2 b

1
2 ≤ 1

2
(a+ b).

This can be proved in a purely algebraic way.

Algebraic proof of arithmetic geometric mean inequality

a+ b− 2a
1
2 b

1
2 = (a

1
2 − b

1
2 )2.

Analytic proof of arithmetic geometric mean inequality

It suffices to prove the inequality when a+ b = 1. This is because

(ta)
1
2 (tb)

1
2 = ta

1
2 b

1
2 ,

while

(ta+ tb) = t(a+ b),

so we just pick t = 1
a+b

.
Thus what we need to prove is

√
x
√

1− x ≤ 1

2
,

when 0 < x < 1. We let

f(x) =
√
x
√

1− x,

and calculate

f ′(x) =

√
1− x
2
√
x
−

√
x

2
√

1− x
.

f ′′(x) = − 1

2
√
x
√

1− x
−

√
x

4(1− x)
3
2

−
√

1− x
4x

3
2

.
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All terms in the last line are negative so f is strictly concave. The unique
critical point is at x = 1

2
, where equality holds. We have shown that

√
x
√

1− x ≤ 1

2
,

since 1
2

is the maximum.

The analytic proof looks a lot messier than the algebraic one, but it is more
powerful. For instance, by the same methods, we get that if α,β > 0 and

α + β = 1,

then
aαbβ ≤ αa+ βb,

for a,b > 0.

Exercises for Section 5.1

1. Let a function f be twice continuously differentiable
on [a,b]. Show that f is concave if and only if
f ′′(x) ≤ 0 for every x ∈ (a,b).

2. Let f and g be continuous on [0,∞) and twice con-
tinuously differentiable on (0,∞). Suppose that f
and g are increasing and concave on (0,∞) and sup-
pose that g(0) = 0 and g(t) > 0 for t > 0. Show
that

h(x) = f(g(x)),

is increasing and concave.

♦ 5.2 Inequalities

Another way in which optimization can be applied is to prove inequalities.

Arithmetic Geometric mean inequality Let a and b be positive num-
bers then

a
1
2 b

1
2 ≤ 1

2
(a+ b).

This can be proved in a purely algebraic way.

Algebraic proof of arithmetic geometric mean inequality

a+ b− 2a
1
2 b

1
2 = (a

1
2 − b

1
2 )2.

Analytic proof of arithmetic geometric mean inequality
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It suffices to prove the inequality when a+ b = 1. This is because

(ta)
1
2 (tb)

1
2 = ta

1
2 b

1
2 ,

while
(ta+ tb) = t(a+ b),

so we just pick t = 1
a+b

.
Thus what we need to prove is

√
x
√

1− x ≤ 1

2
,

when 0 < x < 1. We let
f(x) =

√
x
√

1− x,

and calculate

f ′(x) =

√
1− x
2
√
x
−

√
x

2
√

1− x
.

f ′′(x) = − 1

2
√
x
√

1− x
−

√
x

4(1− x)
3
2

−
√

1− x
4x

3
2

.

All terms in the last line are negative so f is strictly concave. The unique
critical point is at x = 1

2
, where equality holds. We have shown that

√
x
√

1− x ≤ 1

2
,

since 1
2

is the maximum.

The analytic proof looks a lot messier than the algebraic one, but it is more
powerful. For instance, by the same methods, we get that if α,β > 0 and

α + β = 1,

then
aαbβ ≤ αa+ βb,

for a,b > 0.
This simply requires applying concavity for the function

f(x) = xα(1− x)β,

and finding the unique maximum.

Closely related to the arithmetic geometric mean inequality us the geomet-
ric harmonic mean inequality. The simplest version is:

Simple version of Harmonic Geometric mean inequality Let a,b > 0
be real numbers:

2
1
a

+ 1
b

≤ a
1
2 b

1
2 .



5.2: Inequalities 119

Proof Multiply numerator and denominator of the left hand side by ab.
Then divide both sides by a

1
2 b

1
2 and take the reciprocal and you obtain the

arithmetic geometric mean inequality. All steps are reversible so that the two
inequalities are equivalent.

In the same way, we can obtain a more general (weighted) version. Let
α,β > 0 with α + β = 1. Then

1
α
a

+ β
b

≤ aαbβ.

We can obtain similar results for sums of not just two terms but n terms.

n-term AGM inequality Let α1, . . . ,αn > 0 with

n∑
j=1

αj = 1.

Then

aα1
1 a

α2
2 . . . aαnn ≤

n∑
j=1

αjaj.

Proof of n-term AGM inequality We prove this by induction on n.
The base case, n = 2 is already known. We let

α =
n−1∑
j=1

αj

and β = αn. We let
a = (aα1

1 . . . a
αn−1

n−1 )
1
α ,

and b = an. Then using the two term AGM inequality, we obtain

aα1
1 a

α2
2 . . . aαnn ≤ αa+ βb.

We now simply apply the n− 1 term AGM to αa to obtain the desired result.

Similarly we could write down an n-term harmonic-geometric mean in-
equality.

Discrete Hölder inequality Let p,q > 0 and 1
p
+1
q

= 1. Let a1, . . . an,b1, . . . ,bn >
0 be real numbers. Then

n∑
j=1

ajbj ≤ (
n∑
j=1

apj)
1
p (

n∑
k=1

bqk)
1
q .
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Proof of discrete Hölder By AGM with α = 1
p

and β = 1
q
, we get

ab ≤ ap

p
+
bq

q
.

Applying this to each term in the sum, we get

n∑
j=1

ajbj ≤
1

p

n∑
j=1

apj +
1

q

n∑
k=1

bqk.

Unfortunately, the right hand side is always larger than what we want by
AGM. However, Hölder’s inequality doesn’t change if we multiply all a’s by
a given positive constant and all b’s by a given positive constant. So we may
restrict to the case that

∑n
j=1 a

p
j and

∑n
k=1 b

q
k are both equal to 1. In that case

the right hand side is exactly 1, which is what we want.

We can also obtain an integral version.

Hölder’s inequality Let p,q > 0 and 1
p

+ 1
q

= 1. Let f,g be nonnegative

integrable functions on an interval [a,b]. Then∫ b

a

f(x)g(x)dx ≤ (

∫ b

a

f(x)pdx)
1
p (

∫ b

a

g(x)qdx)
1
q .

To prove this, we just apply the discrete Hölder’s inequality to Riemann
sums.

We can apply Hölder’s inequality to estimate means. To wit with f non-
negative and integrable and p,q as above:

1

b− a

∫ b

a

f(x)dx (5.1)

=
1

b− a

∫ b

a

f(x) · 1dx (5.2)

≤ (
1

b− a

∫ b

a

1qdx)
1
q (

1

b− a

∫ b

a

f(x)pdx)
1
p (5.3)

= (
1

b− a

∫ b

a

f(x)pdx)
1
p (5.4)

(5.5)

This inequality says that the pth root of the mean pth power of f is greater
than or equal to the mean of f as long as p > 1. A slightly more general
formulation is
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Jensen’s Inequality Let g be a convex function and f as before then

g(
1

b− a

∫ b

a

f(x)dx) ≤ 1

b− a

∫ b

a

g(f(x))dx.

We can build up a proof of this starting from sums of two terms, general-
izing to sums of n terms by induction, and ultimately to integrals by applying
the n-term version to Riemann sums. The two term version:

g(αa+ βb) ≤ αg(a) + βg(b),

is self-evidently the definition of convexity of g. Thus we have come full circle.
We can think of Hölder’s inequality as being true because the function xp is
convex.

Exercises for Section 5.2

1. Use the concavity of the log function to prove the
generalized arithmetic-geometric mean inequality:
Namely if α,β > 0 and α+ β = 1, then if a,b > 0

aαbβ ≤ αa+ βb.

♦ 5.3 Economics

Today will be a lecture on resource allocation.

In Lecture 20, we saw that if f,g are functions continuous on [0,∞) which
are twice continuously differentiable on (0,∞) and satisfy f ′′(x),g′′(x) < 0 for
all x ∈ (0,∞) and also satisfy

lim
x−→0

f ′(x) = lim
x−→0

g′(x) =∞,

then the function
Ft(x) = f(x) + g(t− x),

has a unique maximum. We discussed that this maximization may be thought
of as an optimal allocation for a resource for which t units are available and
which has two uses whose values are given by f and g.

Today’s lecture can be viewed as a very basic introduction to a field called
by its practitioners, “modern macroeconomics”, which consists entirely in the
study of such optimization problems.

A more precise description of macroeconomics is that it is the field of study
that concentrates on the behavior of the economy as a whole. Macroeconomics
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is not well represented here at Caltech. (Perhaps one reason is that the reputa-
tion of macroeconomics as a subfield of economics is that it is one of the least
mathematically rigorous subfields.) However, it is an extremely important
subfield, at least in terms of its impact on society. The federal reserve bank,
which controls the money supply of the United States ( as well as many other
central banks around the world) models the economy almost entirely based on
theoretical ideas from modern macroeconomics. (They use statistical input,
as well, of course.) Today we’ll se a hint of how that works.

Before I can explain how a macroeconomic model works, I have to explain
what functions economists are maximizing. To do this, I have to explain the
notion of a utility function.

Roughly speaking, a utility function u(x) is a function of x, which is a
quantity of a good or amount of money, which says how happy someone is to
have that quantity of the good or that amount of money. You might ask why
we need such a function. Why shouldn’t I imagine that I am a million times
happier having a million dollars than having one dollar. Why not just use x?

Economists often explain that this is to avoid gambling paradoxes. We
begin a short aside on gambling. A fair coin is one that if you flip it, the
probability of landing on heads is 1

2
and the probability of landing on tails is

1
2
. If we play a game of chance where I flip a coin and I give you x dollars

when the coin lands on heads and y dollars when the coin lands on tails, we
say the “fair price” for playing this game is x+y

2
dollars.

Now I’ll describe a slightly more complicated game of chance. I flip a coin.
If it lands on heads, I give you one dollar. If it lands on tails, I flip again. Now
if it lands on heads, I give you two dollars. If tails, we flip again. If heads, I
give you four dollars, if tails we flip again. And so on. In general, the game
ends the first time I flip heads. I pay 2j−1 dollars if this happens on the jth
try.

What is the fair price of this game? There is 1
2

probability of head on
the first flip. So this contributes 1

2
1 = 1

2
dollars to the fair price. There is 1

4

probability of getting to the second flip with heads. This contributes 1
4
2 = 1

2

dollars to the fair price. There is 1
2j

probability of getting to the jth flip and
getting heads. This contributes 1

2j
2j−1 = 1

2
to the fair price. Each j contributes

1
2

to the fair price. So the fair price is∞. No one would pay this price however.

This creates a problem for economists. They have to explain the behavior
of people in the real world. If they won’t pay ∞ for this game, they aren’t
using the fair price model. Economists explain this by saying that people have
a concave utility function. (They just don’t like large amounts of money that
much.) Really they are calculating the fair utility they are giving for the utility
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they might expect. Incidentally, if you ask the same economists why people
actually play lotteries, they are likely to say, “Those people are just stupid!”

Now we introduce the simplest version of a modern macroeconomic model.
This is sometimes called the neoclassical growth model.

The idea is going to be that people make forecasts about the future and
that they are trying to optimize their happiness taking the future into account.
This will be an optimization problem. In our economy, there will be one kind
of good. You might think of seeds. You can eat them or you can plant them.
You have a utility function u of x. The number u(x) represents how happy
you are when you eat x seeds. The utility function u is a nice function. It is
defined and increasing on (0,∞), it is concave and

lim
x−→∞

u′(x) =∞.

The rules of the economy are that you are the only person in the economy.
Time is divided into discrete periods. (Think harvests.) In the jth period, you
might eat xj. There is a number 0 < β < 1 called your discounting factor, so
that your happiness is given by

H(x0,x1, . . . ,xj, . . . ) = u(x0) + βu(x1) + β2u(x2) + . . . .

At time period zero, you start with k0 seed. You eat x0 and plant k0 − x0.
The seed you plant goes into a Cobb Douglas machine as capital. Like the
little red hen from the story, you are happy to work to get the harvest. So
labor is 1. And k1 = (k0 − x0)α with 0 < α < 1. In general, at time period j,
you have kj seed, you choose 0 < xj < kj and you get

kj+1 = (kj − xj)α.

Your problem, starting at k0 is to play this game to optimizeH(x0,x1, . . . ,xj, . . . ).
How do we do it? It looks hard because it is an optimization problem in in-
finitely many variables.

The key is to notice

H(x0,x1, . . . xj, . . . ) = u(x0) + βH(x1, . . . ,xj, . . . ).

Let V (k0) be the solution to the game, the optimal value you can get from k0.
Then V (k0) is the maximum of

u(x0) + βV ((k0 − x0)α),

where x0 lies between 0 and k0. This is exactly a resource allocation problem
like in lecture 20, provided that V is a concave function with derivative going
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to infinity at 0. However, so far our reasoning is circular. We can only get to
this allocation problem, by assuming our problem is already solved.

There are various ways of converging to a solution though. Suppose you
know you are only going to live for two time periods. Then in the last time
period, you should eat all your seed. So you are optimizing

u(x0) + βu((k0 − x0)α),

which you can do. Call the optimum V1(k0). Next imagine, you will live for
three periods. You should optimize

u(x0) + βV1((k0 − x0)α).

Call the optimum V2(k0). Proceed likewise for arbitrarily many lifetimes and
just let

V (k0) = lim
j−→∞

Vj(k0).

Basically the limit will converge, because the difference comes from consump-
tion multiplied by high powers of β which are getting quite small. You should
ask how we can prove concavity of the Vj’s so we can continue this process.
One of your homework problems this week addresses that.

Robert Lucas, who basically founded modern macroeconomics, got his no-
bel prize for showing that a number of somewhat fancier models can be solved
in the same way. The single agent, which I’ve described as “you”, which is
the only consumer in this model, plays the role of a representative agent. We
figure all consumers are about the same, and we determine how they will be-
have based on how the representative one behaves. It is possible to think that
a macroeconomy consists of a lot of consumers who are different from one
another. Can one extend this theory to them? That is a major open problem
...

Exercises for Section 5.3

1. Let f(K,L) be a function of nonnegative K and L
with the scaling property:

f(tK,tL) = tf(K,L),

for t a positive real. Define the single variable func-
tions

fK(L) = gL(K) = f(K,L).

Suppose that each of fK and gL is increasing, and
fL(0) = fK(0) = 0. Suppose that each of fK and
gL is continuously differentiable on the positive real
numbers. Show that

f(K,L) = Kg′L(K) + Lf ′K(L),

for any positive K and L.

2. Let f and g be continuous functions on [0,∞). Sup-
pose both f and g are twice continuously differen-
tiable on (0,∞) and that both are concave. Suppose
that for each value of t, the function

W (x) = f(x) + g(t− x)

has a unique maximum attained at x(t) and suppose
the function x(t) is twice continuously differentiable.
Show that

V (t) = f(x(t)) + g(t− x(t)),

is concave.



Chapter 6

Trigonometry, Complex numbers, and
Power Series

♦ 6.1 Trig functions by arclength

We begin by defining the arclength of the graph of a differentiable function
y = f(x) between x = a and x = b. We motivate our definition by calculating
the length of the part of the line y = mx between x = a and x = b. This is
the hypotenuse of a right triangle whose legs have lengths b− a and m(b− a)
respectively. Thus by the Pythagorean theorem, the length of the hypotenuse
is given by (b−a)

√
1 +m2. This motivates the following definition of arclength.

(We view arclength as the limit of lengths of splines along the curve.)

Definition Let f be a differentiable function on the interval [a,b]. The
arclength of the graph of f is∫ b

a

√
1 + (f ′(x))2dx.

We immediate apply this definition to our favorite curve from plane geom-
etry: the unit circle. The part of the unit circle in the upper half plane is the
curve

y =
√

1− x2.

With f(x) =
√

1− x2, we calculate

f ′(x) =
−x√
1− x2

,

so that √
1 + (f ′(x))2 =

1√
1− x2

.

Thus the arclength A of the circle between x = 0 and x = a (actually the
negative of the arclength if a is negative) is given by

A =

∫ a

0

dx√
1− x2

.

125
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We have no especially nice way of computing this integral, so we just give
it a name. We say

arcsin a =

∫ a

0

dx√
1− x2

.

This entirely corresponds to our intuition from plane geometry. When
studying geometry, we keep going about the arclengths of parts of circles,
even before we can define what arclength actually means. We associate arcs
on circles with the angles that subtend them, and the arc we are describing
corresponds to the angle whose sine is a. The reason that inverse function to
sin has such an odd name is that it is computing the length of an arc. For our
purposes, we look at things a little differently. We have no way of describing
the function sin x without its inverse, because we don’t know what an angle
means without the notion of arclength. However clearly arcsin is increasing as
a goes from −1 to 1 (and it is odd). Thus it has an inverse. We define sin to
be the inverse of arcsin. We have not yet named the domain of sin. We make
the definition that

π

2
=

∫ 1

0

dx√
1− x2

.

This is really the usual definition for π. It is the arclength of the unit semicircle.
We have defined sinx on the interval [−π

2
,π
2
]. On the same interval, we may

define cos x by

cosx =
√

1− sin2 x.

It is not hard to see that for x ∈ [0,π
2
], we have that

cos(
π

2
− x) = sin(x),

because this is just the symmetry between x and y in the definition of the unit
circle.

It is definitely interesting to extend sin and cos to be defined on the whole
real line. We are already in a position to do this by symmetry as well, but
for the moment we refrain. We will have a much clearer way of defining this
extension later when we introduce complex numbers.

But, for now, as long as we stay in the interval [−π
2
,π
2
], we are in a position

to obtain all the basic facts of calculus for trigonometric functions. Thus, for
instance,

x = arcsin(sinx).

Differentiating in x, we get

1 =
1√

1− sin2 x
(
d

dx
sinx),

and solving for the second factor, we obtain the famous formula that

d

dx
sinx = cosx.



6.1: Trig functions by arclength 127

Applying the symmetry

cos(
π

2
− x) = sin(x),

we immediately obtain that

d

dx
cosx = − sinx.

Using these two results, we can easily build up all the famous formulae in the
calculus of trigonometric functions.

For instance, we define secx = 1
cosx

and tanx = sinx
cosx

. We readily use the
quotient rule to calculate

d

dx
secx = secx tanx,

and
d

dx
tanx = sec2 x.

Then we are free to observe

secx

=
secx(secx+ tanx)

secx+ tanx

=
d
dx

(secx+ tanx)

secx+ tanx

=
d

dx
(log(secx+ tanx)).

In short, all the identities of calculus just come to life.

The final thing I wanted to bring up today is the dual role of π. Perhaps,
we all remember π as the arclength of the unit semi-circle, but we might also
remember it as the area of the unit circle. The first can be a definition, but
then the second should be a consequence. Here is how we see it:

We calculate ∫ 1

0

√
1− x2dx.

This is just the area of one quarter of the unit circle. We will do this using
the (quite natural) trigonometric substitution x = sinu. (Wasn’t x already
the sin of something!?!) We obtain

dx = cosudu.

The integral now runs from 0 to π
2

and becomes∫ π
2

0

cos2 udu.
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We calculate this integral without any fancy double angle identities. We just
use again the symmetry

cos(
π

2
− u) = sin(u),

to obtain ∫ π
2

0

cos2 udu =

∫ π
2

0

sin2 udu.

Thus ∫ π
2

0

cos2 udu =
1

2

∫ π
2

0

(cos2 u+ sin2 u)du,

and since it is easy to integrate 1, we get∫ 1

0

√
1− x2dx =

π

4
.

How is this related to the usual Euclidean proof of the same fact?

Exercises for Section 6.1

1. Prove that π is finite. Hint: You’re being asked

to show that the improper integral
∫ 1

0
dx√
1−x2

=

lima−→1
dx√
1−x2

is finite. The integral has to be con-

sidered improper, because the integrand goes to ∞
as x −→ 1.) Hint: It might help to use the substi-
tution y =

√
1− x2 for part of the integral.

2. Consider the plane curve given by y =∫ x
π
6

√
sec2 t− 1dt, as x runs from π

6 to π
3 . Cal-

culate its arclength. Hint: Just apply the arclength
formula. If you come to an integral whose an-
tiderivative you’re having trouble finding, reread
the section.

3. Let f(x) be a function which is once continuously
differentiable on [0,1]. Then the formula for the ar-
clength of its graph is∫ 1

0

√
1 + f ′(x)2dx.

Here is an alternate definiton for the arclength.
Let lj,N be the length of the line segment between
( j−1N ,f( j−1N )) and ( jN ,f( jN )). Let

SN =

N∑
j=1

lj,N .

Show that

lim
N−→∞

SN =

∫ 1

0

√
1 + f ′(x)2dx.

Hint: Can you show that SN is a Riemann sum for
the right hand side?

♦ 6.2 Complex numbers

Here, we’re going to introduce the system of complex numbers. The main
motivation for doing this is to establish a somewhat more invariant notion of
angle than we have already. Let’s recall a little about how angles work in the
Cartesian plane.
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A brief review of two dimensional analytic geometry

Points in the Cartesian plane are given by pairs of numbers (x,y). Usually
when we think of points, we think of them as fixed positions. (Points aren’t
something you add and the choice of origin is arbitrary.) The set of these
points is sometimes referred to as the affine plane. Within this plane, we also
have the concept of vector. A vector is often drawn as a line segment with
an arrow at the end. It is easy to confuse points and vectors since vectors
are also given by ordered pairs, but in fact a vector is the difference of two
points in the affine plane. (A change of coordinates could change the origin
to some other point, but it couldn’t change the zero vector to a vector with
magnitude.) It is between vectors that we measure angles.

If
→
a = (a1,a2), we define the magnitude of

→
a written |→a | by

√
a21 + a22, as

suggested by the Pythagorean theorem. Given another vector
→
b = (b1,b2), we

would like to define the angle between
→
a and

→
b . We define the dot product

→
a ·
→
b = a1b1 + a2b2.

A quick calculation shows that

|→a −
→
b |2 = |→a |2 + |

→
b |2 − 2|→a ·

→
b |.

Therefore, we can start to define the angle θ between
→
a and

→
b by

→
a ·
→
b = |→a ||

→
b | cos θ,

inspired by the law of cosines. Note that this only defines the angle θ up to its

sign. The angle between
→
a and

→
b is indistinguishable from the angle between

→
b and

→
a .

There is another product we can define between two dimensional vectors
which is the cross product:

→
a ×

→
b = a1b2 − b1a2.

We readily observe that

|→a ×
→
b |2 + |→a ·

→
b |2 = |→a |2|

→
b |2.

This leads us to
→
a ×

→
b = |→a ||

→
b | sin θ,

which gives a choice of sign for the angle θ.

Complex numbers
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We now introduce the complex numbers which give us a way of formalizing
a two-dimensional vector as a single number, and defining the multiplication
of these numbers in a way that involves both of the forms of multiplication
that we say before.

We introduce i to be a formal square root of −1. Of course, the number
−1 has no square root which is a real number. i is just a symbol, but we will
define multiplication using i2 = −1. A complex number is a number of the
form

a = a1 + ia2,

where a1 and a2 are real numbers. We write

Re(a) = a1

and
Im(a) = a2.

We can define addition and subtraction of complex numbers. If

b = b1 + ib2,

then we define
a+ b = (a1 + b1) + i(a2 + b2),

and
a− b = (a1 − b1) + i(a2 − b2).

These, of course, exactly agree with addition and subtraction of vectors. The
fun begins when we define multiplication. We just define it so that the dis-
tributive law holds.

ab = a1b1 − a2b2 + i(a1b2 + a2b1).

We pause for a quick remark. There is something arbitrary about the
choice of i. Certainly i is a square root of −1. But so is −i. Replacing i by −i
changes nothing about our number system. We give this operation a name,
complex conjugation. Namely if

a = a1 + ia2,

then the complex conjugate of a is

ā = a1 − ia2.

Once we have the operation of complex conjugation, we can begin to under-
stand the meaning of complex multiplication. Namely to the complex number
a is associated the vector

→
a = (a1,a2).
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Similarly to the complex conjugate of b is associated the vector

→
b = (b1,− b2).

Then

ab =
→
a ·
→
b + i

→
a ×

→
b .

To every complex number is associated a magnitude

|a| =
√
a21 + a22.

Notice complex conjugation doesn’t change this:

|a| = |ā|.

To each complex number a is also associated its direction which we temporarily
denote as θ(a), the angle θ that a makes with the x axis. Complex conjugation
reflects complex numbers across the x-axis so

θ(ā) = −θ(a).

Now from our description of multiplication of complex numbers in terms of
vectors, we see that

ab = |a||b| cos(θ(a) + θ(b)) + i|a||b| sin(θ(a) + θ(b)).

Thus
|ab| = |a||b|,

and
θ(ab) = θ(a) + θ(b).

This gives a geometrical interpretation to multiplication by a complex number
a. It stretches the plane by the magnitude of a and rotates the plane by the
angle θ(a). Note that this always gives us that

aā = |a|2.

This gives us a way to divide complex numbers:

1

b
=

b̄

|b|2
,

so that
a

b
=

ab̄

|b|2
.

There is no notion of one complex number being bigger than another, so
we don’t have least upper bounds of sets of complex numbers. But it is easy
enough to define limits. If {an} is a sequence of complex numbers, we say that

lim
n−→∞

an = a,
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if for every real ε > 0, there exists N > 0 so that if n > N , we have

|a− an| < ε.

You will prove for homework that magnitude of complex numbers satisfies the
triangle inequality.

In the same way, we can define limits for complex valued functions. Given
a power series ∑

n

anz
n,

it has the same radius of convergence R as the real power series∑
n

|an|xn,

and converges absolutely for every z with |z| < R.

We can complete our picture of the geometry of complex multiplication by
considering

ez =
∞∑
n=0

zn

n!
.

This power series converges for all complex z since its radius of convergence
is infinite. We restrict our attention to the function

f(θ) = eiθ,

with θ real. We may ask what is |eiθ|? We calculate

|eiθ|2 = eiθēiθ = eiθe−iθ = 1.

(You will verify the identity ez+w = ezew in your homework.) Thus as θ varies
along the real line, we see that eiθ traces out the unit circle. How fast (and
in which direction) does it trace it? We get this by differentiating f(θ) as a
function of θ. We calculate

d

dθ
f(θ) = ieiθ.

In particular, the rate of change of f(θ) has magnitude 1 and is perpindicular
to the position of f(θ). We see then that f traces the circle by arclength.
(That is, θ represents arclength travelled on the circle and from this, we obtain
Euler’s famous formula

eiθ = cos θ + i sin θ.

By plugging into the definition of ez and extracting real and imaginary parts,
we obtain Taylor series for sin and cos by

sin θ = θ − θ3

3!
+
θ5

5!
+ . . . ,
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and

cos θ = 1− θ2

2!
+
θ4

4!
+ . . .

Exercises for Section 6.2

1. Show that sum of the squares of the lengths of the
diagonals of a parallelogram is equal to the sum of
the squares of lengths of its sides. Hint: Rewrite
the statement in terms of vectors.

2. Prove carefully the identity ex+y = exey using the
power series for ex. Hint: You can apply the power
series to x and y and multiply. Consider all the
terms where the number of factors of x and the
number of factors of y add to k. Write out what
these are and compare with the binomial formula.

♦ 6.3 Power series as functions

Recall that a power series is an expression

f(z) =
∞∑
j=0

ajz
j.

Here the sequence {aj} may be a sequence of real numbers or of complex
numbers and z may take vvalues in the real numbers or complex numbers.

For any power series there is a nonnegative number R, possibly 0 or ∞
called the radius of convergence of the power series so that when |z| < R, the
power series converges absolutely and the power series diverges with |z| > R.
We can say more specific things. Namely for any R′ < R then for any 1 > ρ >
R′

R
, there is K depending only on ρ and R′ so that when |z| < R′, we have

|ajzj| ≤ Kρj.

It is unfortunate that that was as complicated to say as it was. It means that
everywhere inside the radius of convergence, the power series may be compared
to a convergent geometric series.

When we are interested the power series on reals, we might emphasize this
by using the variable x, and write

f(x) =
∞∑
j=0

ajx
j.

For |x| < R, the radius of convergence, we may view f as a function of a real
variable just like any we’ve seen in our course. We might guess that the deriva-
tive of this function is the power series obtained by formally differentiating the
original power series.

f [′](x) =
∞∑
j=1

jajx
j−1.
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Note that for x < R, the power series f [′](x) converges absolutely. This is
clearly true when x = 0. For other x, compare the jth term of the series to
Kρj and then the j − 1st term of f [′](x) is controlled by Kjρj

x
. Since

∞∑
j=1

jρj,

converges absolutely so does f [′](x).

Theorem Let f(x) and f [′](x) be as above and let R be the radius of
convergence for f(x). Let |x| < R then f is differentiable at x and

f ′(x) = f [′](x).

Sketch of Proof Let |x| < R, then there is some R′ with |x| < R′ < R.
Because differentiation is local, we can work entirely in the disk |x| < R′.
There exists K and ρ so that

|aj||yj| < Kρj.

Now we set out to calculate

lim
h−→0

f(x+ h)− f(x)

h
=

∑∞
j=0 aj(x+ h)j −

∑∞
j=0 ajx

j

h
.

As long as both |x| < R and |x| + |h| < R, not only do both sums converge
absolutely but we can expand each term (x + h)j in its binomial expansion
and we still have absolute convergence, which means we can do the sum in any
order we choose. So we reorder the sum according to powers of h. The zeroth
powers cancel and the first powers give the formal derivative and we get

lim
h−→0

hf [′] +
∑∞

k=2

∑∞
j=k aj

(
j
k

)
xj−khk

h
.

We view x as being fixed and the numerator as a power series in h,

lim
h−→0

hf [′](x) +
∑∞

k=2 fk(x)hk

h
.

We see that the second term in the numerator is h2 multiplied by a power
series in h with positive radius of convergence. Thus the second term is O(h2)
for h within the radius of convergence and therefore o(h). Thus the theorem
is proved.

Having discovered this, we see a lot of calculations with series become much
easier. Here are some examples.
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Examples
We’ve known for a long time that when |x| < 1, we have

1

1− x
= 1 + x+ x2 + x3 + . . . .

We can take the derivative of both sides obtaining

1

(1− x)2
= 1 + 2x+ 3x2 + . . . .

Of course we also have

1

(1− x)2
= (1 + x+ x2 + . . . )2,

obtaining
(1 + x+ x2 + . . . )2 = 1 + 2x+ 3x2 + . . . .

Of course, we can also integrate the equation

1

1− x
= 1 + x+ x2 + x3 + . . . ,

obtaining

− log(1− x) = x+
x2

2
+
x3

3
+ . . . ,

using the fact that log 1 is 0.

If we have a lot of faith in the theory of differential equations, we might
suppose that ex is the only solution to the the equation

f ′(x) = f(x),

with
f(0) = 1.

We then readily see that

f(x) =
∞∑
j=0

xj

j!
.

This is an independent way of deriving the power series for ex. Plugging in ix,
we see that we have power series for sin and cos too.

An alternative way to think about the derivation of eix is that it is the
unique solution to

f ′(x) = if(x),

with
f(0) = 1.

Of course f(x) = cosx + i sinx solves this too. The differential equation can
be interpreted as saying the tangent line is perpindicular to the radius.

Exercises for Section 6.3
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1. Let
∑∞
j=1 aj be an absolutely convergent series.

Show that the sum of this series is independent of
the order in which you add the terms. Hint: Since
the series is absolutely convergent, for every ε > 0
there exists a number N , so that the sum of absolute
values |aj | with j > N is less than ε. Now consider
some other ordering of the aj ’s. There is some M
for which a1,a2, . . . ,aN appear before the Mth term
of the new ordering.
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