Spectral Packing Dimensions of 1-dimensional quasi-periodic Schrödinger operators

Shiwen Zhang

joint work with Svetlana Jitomirskaya

University of California, Irvine

shiwez1@uci.edu

February 14, 2015
Main Object: Quasi periodic Schrödinger operator on $l^2(\mathbb{Z})$:

$$(Hu)_n = u_{n+1} + u_{n-1} + V(\theta + n\alpha)u_n, \quad n \in \mathbb{Z}, \quad \theta \in \mathbb{T}, \quad \alpha \in \mathbb{R}\setminus\mathbb{Q} \quad (1)$$

In this talk, we discuss the packing dimension of the spectral measure of the above operator.

1. Preliminary and Main result on packing dimension
2. Outline of the Proof
3. Related model and Remaining problems
For any subset S of \mathbb{R} and $\gamma \in [0, 1],$

<table>
<thead>
<tr>
<th>Hausdorff measure and dimension</th>
<th>packing measure and dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ-cover: $\bigcup_{i=1}^{\infty} b_i \supseteq S$</td>
<td>δ-packing: $\bigcup_{i=1}^{\infty} b_i$, disj. centered in S</td>
</tr>
<tr>
<td>$h^\gamma(S) = \lim_{\delta} \inf_{\delta-c} \sum_{i=1}^{\infty}</td>
<td>b_i</td>
</tr>
<tr>
<td>$\dim_H(S) = \sup{\gamma : h^\gamma(S) = \infty}$</td>
<td>$P^\gamma(S) = \inf \left{ \sum_{k=1}^{\infty} P^\gamma(S_k) : S \subset \bigcup_{k=1}^{\infty} S_k, S_k \text{ disj.} \right}$</td>
</tr>
<tr>
<td></td>
<td>$\dim_P(S) = \sup{\gamma : P^\gamma(S) = \infty}$</td>
</tr>
</tbody>
</table>
Given $\gamma \in [0, 1]$, a Borel measure μ on \mathbb{R}, \star will represent Hausdorff or packing respectively. μ is called:

- γ-\star continuous: $\forall S, h^\gamma(S) = 0 \Rightarrow \mu(S) = 0$ (resp. $P^\gamma(S) = 0$).
- γ-\star singular: supported on S with $h^\gamma(S) = 0$ (resp. $P^\gamma(S) = 0$).
Given $\gamma \in [0, 1]$, a Borel measure μ on \mathbb{R}, \star will represent Hausdorff or packing respectively. μ is called:

- γ-continuous: $\forall S, h^\gamma(S) = 0 \Rightarrow \mu(S) = 0$ (resp. $P^\gamma(S) = 0$).
- γ-singular: supported on S with $h^\gamma(S) = 0$ (resp. $P^\gamma(S) = 0$).

Definition

A Borel measure μ on \mathbb{R} is said to have exact \star dimension γ, denoted by $\dim_H(\mu)$ or $\dim_P(\mu)$, if for any $\epsilon > 0$, it is simultaneously $(\gamma - \epsilon)$-\star continuous and $(\gamma + \epsilon)$-\star singular.
Given $\gamma \in [0, 1]$, a Borel measure μ on \mathbb{R}, \star will represent Hausdorff or packing respectively. μ is called:

- γ-\star continuous: $\forall S$, $h^\gamma(S) = 0 \Rightarrow \mu(S) = 0$ (resp. $P^\gamma(S) = 0$).
- γ-\star singular: supported on S with $h^\gamma(S) = 0$ (resp. $P^\gamma(S) = 0$).

Definition

A Borel measure μ on \mathbb{R} is said to have exact \star dimension γ, denoted by $\dim_H(\mu)$ or $\dim_P(\mu)$, if for any $\varepsilon > 0$, it is simultaneously $(\gamma - \varepsilon)$-\star continuous and $(\gamma + \varepsilon)$-\star singular.

- zero-\star dimensional: γ-\star singular for every $\gamma > 0$
- one-\star dimensional: γ-\star continuous for every $\gamma < 1$.

S. Zhang (UCI) Spectral Packing Dimensions February 14, 2015 4 / 14
Almost Mathieu operator

\[(H_{\lambda, \theta, \alpha} u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n, \, \lambda > 0.\] (2)
Almost Mathieu operator

\[(H_{\lambda, \theta, \alpha} u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n, \quad \lambda > 0.\] \hspace{1cm} (2)

‘Trivial’ region: pure a.c. or pure point spectrum appears:

- $0 < \lambda < 1$, $\forall \theta, \alpha$, $\mu = \mu_{ac}$, $\dim_H(\mu) = \dim_P(\mu) = 1$
- $\lambda > 1$, $\alpha \in D.C.$, θ non-resonant, $\mu = \mu_{pp}$, $\dim_H(\mu) = \dim_P(\mu) = 0$
Almost Mathieu operator

\[(H_{\lambda, \theta, \alpha} u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n, \quad \lambda > 0. \quad (2)\]

‘Trivial’ region: pure a.c. or pure point spectrum appears:

- \(0 < \lambda < 1, \forall \theta, \alpha, \mu = \mu_{ac}, \dim_H(\mu) = \dim_P(\mu) = 1\)
- \(\lambda > 1, \alpha \in D.C., \theta \) non-resonant, \(\mu = \mu_{pp}, \dim_H(\mu) = \dim_P(\mu) = 0\)

Interesting region: singular continuous spectrum appears.

- Jitomirskaya, Last: \(\lambda > 1, \forall \alpha \in \mathbb{R}\setminus\mathbb{Q}, \forall \theta, \dim_H(\mu) = 0;\)
- Simon: generalized to Jacobi operator with positive Lyapunov exponent.
- Last, Shamis: \(\lambda = 1, \exists\) dense \(G_\delta\) set of \(\alpha, \forall \theta, \dim_H(\sigma(H_\theta)) = 0.\)
Almost Mathieu operator

\[(H_{\lambda, \theta, \alpha} u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n, \quad \lambda > 0.\]

(2)

‘Trivial’ region: pure a.c. or pure point spectrum appears:

- $0 < \lambda < 1$, $\forall \theta, \alpha$, $\mu = \mu_{ac}$, $\dim_H(\mu) = \dim_P(\mu) = 1$
- $\lambda > 1$, $\alpha \in D.C.$, θ non-resonant, $\mu = \mu_{pp}$, $\dim_H(\mu) = \dim_P(\mu) = 0$

Interesting region: singular continuous spectrum appears.

- Jitomirskaya, Last: $\lambda > 1$, $\forall \alpha \in \mathbb{R}\setminus\mathbb{Q}$, $\forall \theta$, $\dim_H(\mu) = 0$;
 Simon: generalized to Jacobi operator with positive Lyapunov exponent.
- Last, Shamis: $\lambda = 1$, \exists dense G_δ set of α, $\forall \theta$, $\dim_H(\sigma(H_\theta)) = 0$.

Problem

What about the packing dimension of spectral measure of AMO?
Consider quasi periodic Schrödinger operator on $l^2(\mathbb{Z})$:

$$ (Hu)_n = u_{n+1} + u_{n-1} + V(\theta + n\alpha)u_n, \quad n \in \mathbb{Z}, \quad \theta, \alpha \in \mathbb{T} $$

(3)

where $V : \mathbb{T} \rightarrow \mathbb{R}$ is assumed to be Lipschitz continuous.

Denote by

$$ \beta(\alpha) := \limsup_n \frac{\log q_{n+1}}{q_n} $$

where $\frac{p_n}{q_n}$ is the n^{th} rational approximation of α.

Theorem (Main) If $\beta(\alpha) = \infty$, for any θ, the spectral measure μ_θ of Schrödinger operator (3) has packing dimension one.
Consider quasi periodic Schrödinger operator on $l^2(\mathbb{Z})$:

$$(Hu)_n = u_{n+1} + u_{n-1} + V(\theta + n\alpha)u_n, \ n \in \mathbb{Z}, \ \theta, \alpha \in \mathbb{T}$$ \hspace{1cm} (3)$$

where $V : \mathbb{T} \to \mathbb{R}$ is assumed to be Lipschtiz continuous.

Denote by

$$\beta(\alpha) := \limsup_n \frac{\log q_{n+1}}{q_n}$$

where $\frac{p_n}{q_n}$ is the n^{th} rational approximation of α.

Theorem (Main)

If $\beta(\alpha) = \infty$, for any θ, the spectral measure μ_θ of Schrödinger operator (3) has packing dimension one.
Corollary on AMO

AMO:

\[(H_{\lambda,\theta,\alpha}u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n\]
Corollary on AMO

AMO:

$$(H_{\lambda,\theta,\alpha}u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n$$

Corollary

If $\beta(\alpha) = \infty$, *then for any* $\lambda > 0$ *and* θ, *dim*$_P(\mu_\theta) = 1$.
Corollary on AMO

AMO:

\[(H_{\lambda,\theta,\alpha}u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n\]

Corollary

If \(\beta(\alpha) = \infty\), then for any \(\lambda > 0\) and \(\theta\), \(\dim_P(\mu_\theta) = 1\).

Let \(dN\) be the density states measure and \(\Sigma\) be the spectrum.

Corollary

If \(\lambda = 1, \beta(\alpha) = \infty\), then \(\dim_P(\Sigma) = \dim_P(dN) = 1\).
Corollary on AMO

AMO:

\[(H_{\lambda,\theta,\alpha} u)_n = u_{n+1} + u_{n-1} + 2\lambda \cos 2\pi(\theta + n\alpha)u_n \]

Corollary

If \(\beta(\alpha) = \infty \), then for any \(\lambda > 0 \) and \(\theta \), \(\dim_P(\mu_\theta) = 1 \).

Let \(dN \) be the density states measure and \(\Sigma \) be the spectrum.

Corollary

If \(\lambda = 1, \beta(\alpha) = \infty \), then \(\dim_P(\Sigma) = \dim_P(dN) = 1 \).

- \(\lambda > 1, \beta = \infty, \forall \theta, 0 = \dim_H(\mu_\theta) < \dim_P(\mu_\theta) = 1 \).
- \(\lambda = 1, \exists \text{ dense } G_\delta \text{ set of } \alpha, 0 = \dim_H(\Sigma_\alpha) < \dim_P(\Sigma_\alpha) = 1 \).
\[Hu = Eu \iff A_n(\theta, E) \begin{pmatrix} u_1 \\ u_0 \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} \]

\[A(\theta, E) = \begin{pmatrix} E - V(\theta) & -1 \\ 1 & 0 \end{pmatrix}, \quad A_n = \prod_n A(\theta + j\alpha) \]
Rational approximation and Bound for trace map

\[Hu = Eu \iff A_n(\theta, E) \begin{pmatrix} u_1 \\ u_0 \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} \]

\[A(\theta, E) = \begin{pmatrix} E - V(\theta) & -1 \\ 1 & 0 \end{pmatrix}, \quad A_n = \prod_n A(\theta + j\alpha) \]

Let \(\Lambda := \sup_{E, \theta} \log \| A(\theta, E) \| \). Let \(q_{n_k} \) be the subsequence of \(q_n \) such that \(\frac{\log q_{n_k+1}}{q_{n_k}} > \beta - \Lambda/200 \) (denote by \(q_k \) for simplicity).
Rational approximation and Bound for trace map

\[Hu = Eu \iff A_n(\theta, E) \begin{pmatrix} u_1 \\ u_0 \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} \]

\[A(\theta, E) = \begin{pmatrix} E - V(\theta) & -1 \\ 1 & 0 \end{pmatrix}, \quad A_n = \prod_{n} A(\theta + j\alpha) \]

Let \(\Lambda := \sup_{E,\theta} \log \| A(\theta, E) \| \). Let \(q_{n_k} \) be the subsequence of \(q_n \) such that \(\frac{\log q_{n_k+1}}{q_{n_k}} > \beta - \Lambda/200 \) (denote by \(q_k \) for simplicity).

Theorem

If \(\beta > 30\Lambda \), then for any \(\theta \) and for \(\mu \) a.e. \(E \), there is \(K(E) \) such that

\[|\text{Trace}(A_{q_k}(E, \alpha, \theta))| < 2 - e^{-10\Lambda q_k}, \quad k \geq K(E). \]
Conclusion of the Main Theorem

Let $M : \mathbb{C}^+ \leftrightarrow \mathbb{C}^+$ be the m-function of H associated with spectral measure μ. Combine the previous estimates on trace with subordination theory developed by Jitmoskaya and Last.

There is some absolute constant C_0, for any $\gamma < 1$, if $\beta > C_0 1 - \gamma \Lambda$ then spectrally a.e. E, there is a sequence $\eta_k \to 0$, such that $\eta_1 - \gamma k |M(E + i \eta_k)| < 100$, $k \geq K(E)$ (5)

Therefore, $D_\gamma \mu(E) < \infty \mu$-a.e. E, i.e., the spectral measure μ is γ-packing continuous.

$\beta = \infty$: μ is γ-packing continuous for any $\gamma < 1$ \Rightarrow $\dim P(\mu) = 1$.

$\beta > C_0 \Lambda$: $\exists \gamma_0 > 0$ s.t. μ is γ-packing continuous for any $\gamma < \gamma_0$ \Rightarrow $\dim P(\mu) \geq \gamma_0 > 0$.
Conclusion of the Main Theorem

Let \(M : \mathbb{C}^+ \mapsto \mathbb{C}^+ \) be the \(m \)-function of \(H \) associated with spectral measure \(\mu \). Combine the previous estimates on trace with subordnacy theory developed by Jitmorskaya and Last.

Theorem

There is some absolute constant \(C_0 \), for any \(\gamma < 1 \), if \(\beta > \frac{C_0}{1-\gamma} \Lambda \) then spectrally a.e. \(E \), there is a sequence \(\eta_k \to 0 \), such that

\[
\eta_k^{1-\gamma} |M(E + i\eta_k)| < 100, \quad k \geq K(E)
\]

Therefore, \(D^\gamma \mu(E) < \infty \) \(\mu \)-a.e. \(E \), i.e., the spectral measure \(\mu \) is \(\gamma \)-packing continuous.
Conclusion of the Main Theorem

Let $M : \mathbb{C}^+ \mapsto \mathbb{C}^+$ be the m-function of H associated with spectral measure μ. Combine the previous estimates on trace with subordnacny theory developed by Jitmorskaya and Last

Theorem

There is some absolute constant C_0, for any $\gamma < 1$, if $\beta > \frac{C_0}{1-\gamma} \Lambda$ then spectrally a.e. E, there is a sequence $\eta_k \rightarrow 0$, such that

$$\eta_k^{1-\gamma} |M(E + i\eta_k)| < 100, \quad k \geq K(E) \quad (5)$$

Therefore, $D^\gamma \mu(E) < \infty \mu$-a.e. E, i.e., the spectral measure μ is γ-packing continuous.

- $\beta = \infty$: μ is γ-packing continuous for any $\gamma < 1 \Rightarrow \dim_P(\mu) = 1$.
- $\beta > C_0 \Lambda$: $\exists \gamma_0 > 0$ s.t. μ is γ-packing continuous for any $\gamma < \gamma_0$ \Rightarrow $\dim_P(\mu) \geq \gamma_0 > 0$
Application to dynamical exponents

\[
\langle |X|^{p}_{\delta_0}(T) \rangle = \frac{2}{T} \int_{0}^{\infty} e^{-2t/T} \sum_{n} |n|^p |\langle e^{-itH}\delta_0, \delta_n \rangle|^2 dt, \quad p > 0.
\]

\[
DE_{\delta_0}^+(p) = \limsup_{T \to \infty} \frac{\log \langle |X|^{p}_{\delta_0}(T) \rangle}{p \log T}, \quad DE_{\delta_0}^+(p) \geq dim_P(\mu)
\]
Application to dynamical exponents

\[\langle |X|^p_{\delta_0} \rangle (T) = \frac{2}{T} \int_0^\infty e^{-2t/T} \sum_n |n|^p |\langle e^{-iH\delta_0, \delta_n} \rangle|^2 \, dt, \quad p > 0. \]

\[DE_\delta^+(p) = \limsup_{T \to \infty} \frac{\log \langle |X|^p_{\delta_0} \rangle (T)}{p \log T}, \quad DE_\delta^+(p) \geq \dim_P(\mu) \]

AMO, \(\lambda > 1 \):

- Last: \(\exists \alpha = \alpha(\lambda, \theta) \) such that \(DE_{\delta_0}(2) = 1. \)
- Damanik, Tcheremchantsev: \(\beta(\alpha) = 0, \ DE_{\delta_0}^+(p) = 0, \ \forall p > 0. \)
Application to dynamical exponents

\[\langle |X|^p_{\delta_0} \rangle (T) = \frac{2}{T} \int_0^{\infty} e^{-2t/T} \sum_n |n|^p |\langle e^{-itH \delta_0, \delta_n} \rangle|^2 dt, \quad p > 0. \]

\[DE^+_{\delta_0}(p) = \limsup_{T \to \infty} \frac{\log \langle |X|^p_{\delta_0} \rangle (T)}{p \log T}, \quad DE^+_{\delta_0}(p) \geq \text{dim}_P(\mu) \]

AMO, \(\lambda > 1 \):

- Last: \(\exists \alpha = \alpha(\lambda, \theta) \) such that \(DE^+_{\delta_0}(2) = 1 \).
- Damanik, Tcheremchantsev: \(\beta(\alpha) = 0, \ DE^+_{\delta_0}(p) = 0, \forall p > 0 \).

Corollary

If \(\beta(\alpha) = \infty \), the dynamics of the Schrödinger operator \(H \) in (3) is quasi-ballistic, namely, \(DE^+_{\delta_0}(p) = 1 \).
Sturm Hamiltonian:

\[(Hu)_n = u_{n+1} + u_{n-1} + \lambda \chi_{[1-\alpha,1)}(n\alpha + \theta \mod 1)u_n, \; \alpha \in \mathbb{R}\setminus\mathbb{Q}\]
Application to Sturm Hamiltonian

Sturm Hamiltonian:

\[(Hu)_n = u_{n+1} + u_{n-1} + \lambda \chi_{[1-\alpha,1)}(n\alpha + \theta \mod 1)u_n, \; \alpha \in \mathbb{R}\setminus\mathbb{Q}\]

Theorem

If \(\beta(\alpha) = \infty\), there is set \(\Theta \subseteq [0,1]\) with full Lebesgue measure, such that for any phase \(\theta \in \Theta\) and for any coupling constant \(\lambda > 0\), the spectral measure \(\mu_\theta\) of Sturm Hamiltonian \(H_{\theta,\lambda,\alpha}\) has packing dimension one.

Corollary

If \(\beta(\alpha) = \infty\), the packing dimension of the density states of measure \(dN_{\lambda,\alpha}\) and the packing dimension of the spectrum \(\Sigma_{\lambda,\alpha}\) are both equal to one.
Fibonacci Hamiltonian, $\alpha = \frac{\sqrt{5} - 1}{2}$, Damanik, Gorodetski, Yessen:

$$\dim_H(dN_\lambda) = \dim_P(dN_\lambda) < \dim_H(\Sigma_\lambda)$$
- Fibonacci Hamiltonian, $\alpha = \frac{\sqrt{5}-1}{2}$, Damanik, Gorodetski, Yessen:

$$\dim_H(dN_\lambda) = \dim_P(dN_\lambda) < \dim_H(\Sigma_\lambda)$$

- S.H., Wen, Liu: for $\lambda > 20$, $\exists \Omega$ with zero Leb measure, s.t., $\dim_H(\Sigma_{\lambda,\alpha}) = 1$ iff $\alpha \in \Omega$
Fibonacci Hamiltonian, \(\alpha = \frac{\sqrt{5}-1}{2} \), Damanik, Gorodetski, Yessen:

\[
\dim_H(dN_\lambda) = \dim_P(dN_\lambda) < \dim_H(\Sigma_\lambda)
\]

S.H., Wen, Liu: for \(\lambda > 20 \), \(\exists \Omega \) with zero Leb measure, s.t.,

\[
\dim_H(\Sigma_{\lambda,\alpha}) = 1 \iff \alpha \in \Omega
\]

\(\exists \alpha \notin \Omega \) while \(\beta(\alpha) = \infty \)

Corollary

There are frequencies \(\alpha \) such that \(\dim_H \Sigma_{\alpha,\lambda} < \dim_P \Sigma_{\alpha,\lambda} = 1 \)
Remaining problems: dimension transition for AMO

\[\beta = \log \lambda \]
Remaining problems: dimension transition for AMO

\[\beta = \log \lambda \]

resonant \(\theta \), zero dimension?
Remaining problems: dimension transition for AMO

\[\beta = C_0 \log \lambda: \text{ is there a transition line?} \]

\[\beta = \log \lambda \]

resonant \(\theta \), zero dimension?
Remaining problems: dimension transition for AMO

\[\beta = C_0 \log \lambda: \text{ is there a transition line?} \]

\[\forall \theta, \text{ zero dimension?} \]

\[\beta = \log \lambda \]

resonant \(\theta \), zero dimension?
Remaining problems: dimension transition for AMO

$\beta = C_0 \log \lambda$: is there a transition line?

$\forall \theta$, zero dimension?

$\beta = \log \lambda$

resonant θ, zero dimension?

packing singular? exact packing dimension?
Remaining problems: dimension transition for AMO

\[\beta = C_0 \log \lambda: \text{is there a transition line?} \]

\[\forall \theta, \text{zero dimension?} \]

\[\beta = \log \lambda \]

resonant \(\theta \), zero dimension?

packing singular? exact packing dimension?

(Hausdorff, packing, box) dimension for general \(\alpha \)
J. Bellissard conjectured: $\dim_H(\Sigma_\alpha) = \gamma(\alpha) \in (0, 1/2]$ for almost every α and $\lambda = 1$.

Numerical results: $\dim_B(\Sigma_\alpha) = 1/2$ almost every α and $\lambda = 1$.

Remaining problems: dimension transition for AMO

$\beta = C_0 \log \lambda$: is there a transition line?

$\forall \theta$, zero dimension?

$p = \log \lambda$:

$\beta = \log \lambda$

Resonant θ, zero dimension?

Packing singular? Exact packing dimension?
Thank you!