Strong ergodicity phenomena for Bernoulli shifts of bounded algebraic dimension

Aristotelis Panagiotopoulos

joint with Assaf Shani

Carnegie Mellon University

May 20, 2022
Dynamics and orbit equivalence relations

Given a continuous action $G \ltimes X$ of a Polish group G on Polish space X we let E^G_X be the associated orbit equivalence relation:

$$xe^G_x' \iff \exists g \in G \ (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?
Dynamics and orbit equivalence relations

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E^G_X be the associated orbit equivalence relation:

$$xE^G_Xx' \iff \exists g \in G (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation (X, E^G_X):

1. **Its position within the Borel reduction hierarchy.**

We say that (X, E) is **Borel reducible** to (Y, F) and we write $E \leq_B F$ if there is a Borel map $f : X \to Y$ with $xEx' \iff f(x)Ff(x').
Dynamics and orbit equivalence relations

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E^G_X be the associated **orbit equivalence relation**:

$$xE^G_Xx' \iff \exists g \in G \ (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation (X, E^G_X):

1. **Its position within the Borel reduction hierarchy.**

 We say that (X, E) is **Borel reducible** to (Y, F) and we write $E \leq_B F$ if there is a Borel map $f : X \to Y$ with $xEx' \iff f(x)Ff(x')$.

2. **Its strong ergodic properties.**

 We say that (X, E) is **strongly ergodic** with respect to (Y, F) if for every Borel $f : X \to Y$ with $xEx' \implies f(x)Ff(x')$ there is a comeager $C \subseteq X$ so that for all $x, x' \in C$ we have that $f(x)Ff(x')$.

Aristotelis Panagiotopoulos (CMU) Strong ergodicity and algebraic dimension May 20, 2022 2 / 18
Dynamics and orbit equivalence relations

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

1. G is compact;
2. For all $G \curvearrowright X$ we have that E_X^G is smooth, i.e., $(X, E_X^G) \leq_B (\mathbb{R}, =)$.
Dynamics and orbit equivalence relations

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

1. G is compact;
2. For all $G \curvearrowright X$ we have that E^G_X is smooth, i.e., $(X, E^G_X) \leq_B (\mathbb{R}, =)$.

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

1. G is CLI;
2. For all $G \curvearrowright X$ we have that E^G_X is classifiable by CLI-actions, i.e., $(X, E^G_X) \leq_B (Y, E^H_Y)$ where $H \curvearrowright Y$ is an action of a CLI group H.
Dynamics and orbit equivalence relations

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

1. G is compact;
2. For all $G \curvearrowright X$ we have that E^G_X is smooth, i.e., $(X, E^G_X) \leq_B (\mathbb{R}, =)$.

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

1. G is CLI;
2. For all $G \curvearrowright X$ we have that E^G_X is classifiable by CLI-actions, i.e., $(X, E^G_X) \leq_B (Y, E^H_Y)$ where $H \curvearrowright Y$ is an action of a CLI group H.

Question (Kechris)

Let G be a Polish group which is not locally-compact. Does there exist some action $G \curvearrowright X$ so that (X, E^G_X) is not essentially countable?
Polish permutation groups
Let $\text{Sym}(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\text{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.
Polish permutation groups

Let $\text{Sym}(\mathbb{N})$ be the Polish group of all bijections $g : \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\text{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^\mathbb{N}$:

$$g \cdot (x_n : n \in \mathbb{N}) = (x_{g^{-1}(n)} : n \in \mathbb{N}).$$
Polish permutation groups

Let $\text{Sym}(\mathbb{N})$ be the Polish group of all bijections $g : \mathbb{N} \rightarrow \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\text{Sym}(\mathbb{N})$. Such P comes together with an action $P \curlywedge \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^\mathbb{N}$:

$$g \cdot (x_n : n \in \mathbb{N}) = (x_{g^{-1}(n)} : n \in \mathbb{N}).$$

Notation. We denote by $E(P)$ the orbit equivalence relation of $P \curlywedge \mathbb{R}^\mathbb{N}$. We denote by $E_{\text{inj}}(P)$ the restriction of $E(P)$ to the P-invariant subset $\text{Inj}(\mathbb{N}, \mathbb{R})$ of $\mathbb{R}^\mathbb{N}$, consisting of all injective sequences.
Polish permutation groups
Let $\text{Sym}(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\text{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^\mathbb{N}$:

$$g \cdot (x_n: n \in \mathbb{N}) = (x_{g^{-1}(n)}: n \in \mathbb{N}).$$

Notation. We denote by $E(P)$ the orbit equivalence relation of $P \curvearrowright \mathbb{R}^\mathbb{N}$. We denote by $E_{\text{inj}}(P)$ the restriction of $E(P)$ to the P-invariant subset $\text{Inj}(\mathbb{N}, \mathbb{R})$ of $\mathbb{R}^\mathbb{N}$, consisting of all injective sequences.

Heuristic. $E_{\text{inj}}(P)$ remembers topological/dynamical properties of P.
Polish permutation groups

Let $\text{Sym}(\mathbb{N})$ be the Polish group of all bijections $g : \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $\text{Sym}(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^\mathbb{N}$:

$$ g \cdot (x_n : n \in \mathbb{N}) = (x_{g^{-1}(n)} : n \in \mathbb{N}). $$

Notation. We denote by $E(P)$ the orbit equivalence relation of $P \curvearrowright \mathbb{R}^\mathbb{N}$. We denote by $E_{\text{inj}}(P)$ the restriction of $E(P)$ to the P-invariant subset $\text{Inj}(\mathbb{N}, \mathbb{R})$ of $\mathbb{R}^\mathbb{N}$, consisting of all injective sequences.

Heuristic. $E_{\text{inj}}(P)$ remembers topological/dynamical properties of P.

Theorem (Kechris, Malicki, P., Zielinski)

If P is not locally compact then $E_{\text{inj}}(P)$ is not essentially countable.

Similarly for when P is non-compact or non-CLI.
Algebraic dimension
Algebraic dimension

Let P be a Polish permutation group.
For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{ g \in P : g(a) = a \text{ for all } a \in F \}$$
Algebraic dimension

Let P be a Polish permutation group.
For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{g \in P : g(a) = a \text{ for all } a \in F\}$$

The **algebraic closure** of $A \subseteq \mathbb{N}$ w.r.t to P is the set $[A]_P \subseteq \mathbb{N}$ with:

$$[A]_P := \{b \in \mathbb{N} : \text{ the orbit } P_F \cdot b \text{ is finite, for some finite } F \subseteq A\}$$
Algebraic dimension

Let P be a Polish permutation group.
For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{ g \in P : g(a) = a \text{ for all } a \in F \}$$

The **algebraic closure** of $A \subseteq \mathbb{N}$ w.r.t to P is the set $[A]_P \subseteq \mathbb{N}$ with:

$$[A]_P := \{ b \in \mathbb{N} : \text{ the orbit } P_F \cdot b \text{ is finite, for some finite } F \subseteq A \}$$

The assignment $\mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ with $A \mapsto [A]_P$ is a **closure operator**:

1. $A \subseteq [A]_P$;
2. $A \subseteq B \implies [A]_P \subseteq [B]_P$;
3. $[[A]_P]_P = [A]_P$
Algebraic dimension

Let P be a Polish permutation group.
For every $F \subseteq \mathbb{N}$ we have the pointwise stabilizer:

$$P_F := \{ g \in P : g(a) = a \text{ for all } a \in F \}$$

The algebraic closure of $A \subseteq \mathbb{N}$ w.r.t to P is the set $[A]_P \subseteq \mathbb{N}$ with:

$$[A]_P := \{ b \in \mathbb{N} : \text{the orbit } P_F \cdot b \text{ is finite, for some finite } F \subseteq A \}$$

The assignment $\mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ with $A \mapsto [A]_P$ is a closure operator:

- $A \subseteq [A]_P$;
- $A \subseteq B \implies [A]_P \subseteq [B]_P$;
- $[[A]_P]_P = [A]_P$

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with $|A| = n + 1$, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, if such n exists. Otherwise, we write $\dim(P) = \infty$.
Permutation groups of finite algebraic dimension

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with $|A| = n + 1$, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where

$$[A]_P := \{ b \in \mathbb{N} : \text{the orbit } P_A \cdot b \text{ is finite} \}$$

Examples.

(1) Let T_4 be the infinite 4-regular tree:

![Diagram of a 4-regular tree]

Then $\dim(\text{Aut}(T_4)) = 1$
Permutation groups of finite algebraic dimension

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with $|A| = n + 1$, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where

$$[A]_P := \{b \in \mathbb{N} : \text{the orbit } P_A \cdot b \text{ is finite}\}$$

Examples.

(2) Let $n \times T_4$ be the forest consisting of n-many infinite 4-regular trees:

Then $\dim(\text{Aut}(n \times T_4)) = n$
Permutation groups of finite algebraic dimension

Definition

The **algebraic dimension** \(\dim(P) \) of \(P \) is the smallest \(n \in \mathbb{N} \) so that for all \(A \subseteq \mathbb{N} \) with \(|A| = n + 1 \), there is \(a \in A \) so that \(a \in [A \setminus \{a\}]_P \), where

\[
[A]_P := \{ b \in \mathbb{N} : \text{ the orbit } P_A \cdot b \text{ is finite} \}
\]

Examples.

(3) Let \(\mathbb{Q}^n \) be the \(n \)-dimensional \(\mathbb{Q} \)-vector space, then

\[
\dim(\text{Aut}(\mathbb{Q}^n)) = n
\]
Permutation groups of finite algebraic dimension

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with $|A| = n + 1$, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where

$$[A]_P := \{ b \in \mathbb{N} : \text{the orbit } P_A \cdot b \text{ is finite} \}$$

Examples.

(3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q}-vector space, then

$$\dim(\text{Aut}(\mathbb{Q}^n)) = n$$

Remark. In examples (1),(2),(3) the permutation group P happens to be locally-compact.
Permutation groups of finite algebraic dimension

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with $|A| = n + 1$, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where

$$[A]_P := \{ b \in \mathbb{N} : \text{the orbit } P_A \cdot b \text{ is finite} \}$$

Examples.

(3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q}-vector space, then

$$\dim(\text{Aut}(\mathbb{Q}^n)) = n$$

Remark. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

This is a consequence of the fact that in all these examples the closure operator $A \mapsto [A]_P$ additionally satisfied the **exchange property**:

$$b \in [A \cup \{a\}]_P \setminus [A]_P \implies a \in [A \cup \{b\}]_P,$$

forming this way a *pre-geometry*.
Permutation groups of finite algebraic dimension

Definition

The **algebraic dimension** $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with $|A| = n + 1$, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where

$$[A]_P := \{b \in \mathbb{N} : \text{the orbit } P_A \cdot b \text{ is finite}\}$$

Examples.

(3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q}-vector space, then

$$\dim(\text{Aut}(\mathbb{Q}^n)) = n$$

Remark. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

This is a consequence of the fact that in all these examples the closure operator $A \mapsto [A]_P$ additionally satisfied the **exchange property:**

$$b \in [A \cup \{a\}]_P \setminus [A]_P \implies a \in [A \cup \{b\}]_P,$$

forming this way a pre-geometry.

There exist **non-locally compact** P with $\dim(P) < \infty$.

Bernoulli shifts and algebraic dimension

Let \(Q \) be a Polish permutation group. Recall the orbit equivalence relation:

\[E_{\text{inj}}(Q), \text{ induced on the injective part of the Bernoulli shift } Q \curlyeqeq \text{Inj}(\mathbb{N}, \mathbb{R}). \]

Question. How much does \(E_{\text{inj}}(Q) \) remember of \(\dim(Q) \)?
Bernoulli shifts and algebraic dimension

Let Q be a Polish permutation group. Recall the orbit equivalence relation:

$E_{\text{inj}}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright \text{Inj}(\mathbb{N}, \mathbb{R})$.

Question. How much does $E_{\text{inj}}(Q)$ remember of $\dim(Q)$?

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

1. $\dim(Q) \leq n$;
2. P is locally-finite and $(n + 1)$–free.

Then, $E_{\text{inj}}(P)$ is strongly ergodic against $E_{\text{inj}}(Q)$. So, $E_{\text{inj}}(P) \not\preceq_B E_{\text{inj}}(Q)$.
Bernoulli shifts and algebraic dimension

Let Q be a Polish permutation group. Recall the orbit equivalence relation:

\[E_{\text{inj}}(Q), \text{ induced on the injective part of the Bernoulli shift } Q \curvearrowright \text{Inj}(\mathbb{N}, \mathbb{R}). \]

Question. How much does $E_{\text{inj}}(Q)$ *remember* of $\dim(Q)$?

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

1. $\dim(Q) \leq n$;
2. P is locally-finite and $(n + 1)$–free.

Then, $E_{\text{inj}}(P)$ is strongly ergodic against $E_{\text{inj}}(Q)$. So, $E_{\text{inj}}(P) \not\preceq_B E_{\text{inj}}(Q)$.

- P is **locally-finite** if for all finite $A \subseteq \mathbb{N}$ we have that $[A]_P$ is finite.
- P is $(n + 1)$–free if for all finite $A \subseteq \mathbb{N}$ there are $g_0, g_1, \ldots, g_n \in P$ so that for all $i \leq n$ we have that $[g_iA]_P$ and $[\bigcup_{j: j \neq i} g_jA]_P$ are disjoint.
Some examples from Baldwin-Koerwien-Laskowski

$L_2 = \{f_0, f_1, f_2, \ldots\}$ consists of a sequence of 2-ary function symbols. Let M_2 be the Fraïssé limit of the class K_2 of all finite L-structures A s.t.

1. for all a_0, a_1 in A and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
2. for all a_0, a_1, a_2 in A there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n.

Then $P_2 := \text{Aut}(M_2)$ is 2-dimensional, locally-finite, 2-free.
Some examples from Baldwin-Koerwien-Laskowski

$\mathcal{L}_2 = \{f_0, f_1, f_2, \ldots\}$ consists of a sequence of 2-ary function symbols. Let \mathbb{M}_2 be the Fraïssé limit of the class \mathcal{K}_2 of all finite \mathcal{L}-structures \mathbb{A} s.t.

1. for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
2. for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n.

Then $P_2 := \text{Aut}(\mathbb{M}_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \geq 2$ we have \mathcal{L}_n, consisting of n-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := \text{Aut}(\mathbb{M}_n)$ is n-dimensional, locally-finite, n-free.
Some examples from Baldwin-Koerwien-Laskowski

\(\mathcal{L}_2 = \{f_0, f_1, f_2, \ldots \} \) consists of a sequence of 2-ary function symbols. Let \(\mathbb{M}_2 \) be the Fra"{i}ssé limit of the class \(\mathcal{K}_2 \) of all finite \(\mathcal{L} \)-structures \(\mathbb{A} \) s.t.

1. for all \(a_0, a_1 \) in \(\mathbb{A} \) and cofinitely many \(n \in \mathbb{N} \), \(f_n(a_0, a_1) = a_0 \).
2. for all \(a_0, a_1, a_2 \) in \(\mathbb{A} \) there is \(n \in \mathbb{N} \) and \(i \in \{0, 1, 2\} \) so that \(a_i \) is the image of \(\{a_0, a_1, a_2\} \setminus \{a_i\} \) under \(f_n \).

Then \(P_2 := \text{Aut}(\mathbb{M}_2) \) is 2-dimensional, locally-finite, 2-free.

Similarly, for every \(n \geq 2 \) we have \(\mathcal{L}_n \), consisting of \(n \)-ary functions, and the corresponding Fra"{i}ssé class \(\mathcal{K}_n \) whose Fra"{i}ssé limit satisfies:

Then \(P_n := \text{Aut}(\mathbb{M}_n) \) is \(n \)-dimensional, locally-finite, \(n \)-free.

Theorem. (Kruckman, P.) If \(m \neq n \), then \(E_{\text{inj}}(P_m) \) and \(E_{\text{inj}}(P_n) \) are incomparable under \(* \)-reductions.
Some examples from Baldwin-Koerwien-Laskowski

\(\mathcal{L}_2 = \{f_0, f_1, f_2, \ldots \} \) consists of a sequence of 2-ary function symbols.

Let \(\mathbb{M}_2 \) be the Fra"issé limit of the class \(\mathcal{K}_2 \) of all finite \(\mathcal{L} \)-structures \(\mathbb{A} \) s.t.

1. for all \(a_0, a_1 \) in \(\mathbb{A} \) and cofinitely many \(n \in \mathbb{N} \), \(f_n(a_0, a_1) = a_0 \).
2. for all \(a_0, a_1, a_2 \) in \(\mathbb{A} \) there is \(n \in \mathbb{N} \) and \(i \in \{0, 1, 2\} \) so that \(a_i \) is the image of \(\{a_0, a_1, a_2\} \setminus \{a_i\} \) under \(f_n \).

Then \(P_2 := \text{Aut}(\mathbb{M}_2) \) is 2-dimensional, locally-finite, 2-free.

Similarly, for every \(n \geq 2 \) we have \(\mathcal{L}_n \), consisting of \(n \)-ary functions, and the corresponding Fra"issé class \(\mathcal{K}_n \) whose Fra"issé limit satisfies:

Then \(P_n := \text{Aut}(\mathbb{M}_n) \) is \(n \)-dimensional, locally-finite, \(n \)-free.

Theorem. (Kruckman, P.) If \(m \neq n \), then \(E_{\text{inj}}(P_m) \) and \(E_{\text{inj}}(P_n) \) are incomparable under \(*\)-reductions.

Corollary of our Main Theorem. (P., Shani) If \(m \preceq n \), then \(E_{\text{inj}}(P_n) \) is strongly ergodic w.r.t. \(E_{\text{inj}}(P_m) \). In particular, we have that:

\[E_{\text{inj}}(P_2) \preceq_B E_{\text{inj}}(P_3) \preceq_B E_{\text{inj}}(P_4) \preceq_B \cdots \]
Relationship with pinned cardinality

Let \((X, E)\) be an equivalence relation, \(\mathbb{P}\) be a poset, and \(\tau\) be a \(\mathbb{P}\)-name.

- \((\mathbb{P}, \tau)\) is an \(E\)-pin, if \(\mathbb{P} \times \mathbb{P}\) forces that \(\tau_l E \tau_r\).
- An \(E\)-pin \((\mathbb{P}, \tau)\) is trivial if there is \(x \in X\) so that \(\mathbb{P} \Vdash \check{x} E \tau\).
- \(E\) is pinned if all \(E\)-pins are trivial.

Example. Let \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) be the injective part of \(\text{Sym}(\mathbb{N}) \sim \mathbb{R}^\mathbb{N}\):
\[
(x_n : n \in \mathbb{N}) \, E_{\text{inj}}(\text{Sym}(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}
\]
Then \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) is unpinned. Take \(\mathbb{P} := \text{Coll}(\mathbb{N}, \mathbb{R})\).
Relationship with pinned cardinality

Let \((X, E)\) be an equivalence relation, \(\mathbb{P}\) be a poset, and \(\tau\) be a \(\mathbb{P}\)-name.

- \((\mathbb{P}, \tau)\) is an \(E\)-pin, if \(\mathbb{P} \times \mathbb{P}\) forces that \(\tau_l E \tau_r\).
- An \(E\)-pin \((\mathbb{P}, \tau)\) is trivial if there is \(x \in X\) so that \(\mathbb{P} \forces \dot{x} E \tau\)
- \(E\) is **pinned** if all \(E\)-pins are trivial.

Example. Let \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) be the injective part of \(\text{Sym}(\mathbb{N}) \acts \mathbb{R}^\mathbb{N}:\)
\[(x_n : n \in \mathbb{N}) E_{\text{inj}}(\text{Sym}(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\} \]
Then \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) is **unpinned**. Take \(\mathbb{P} := \text{Coll}(\mathbb{N}, \mathbb{R})\).

Question. (Kechris) Is \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) the \(\leq_B\)-least unpinned E.R.?
Relationship with pinned cardinality

Let \((X, E)\) be an equivalence relation, \(\mathbb{P}\) be a poset, and \(\tau\) be a \(\mathbb{P}\)-name.

- \((\mathbb{P}, \tau)\) is an \(E\)-pin, if \(\mathbb{P} \times \mathbb{P}\) forces that \(\tau \downarrow E \tau\).
- An \(E\)-pin \((\mathbb{P}, \tau)\) is trivial if there is \(x \in X\) so that \(\mathbb{P} \Vdash \check{x} E \tau\).
- \(E\) is **pinned** if all \(E\)-pins are trivial.

Example. Let \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) be the injective part of \(\text{Sym}(\mathbb{N}) \bowtie \mathbb{R}^\mathbb{N}:\)

\[(x_n : n \in \mathbb{N}) E_{\text{inj}}(\text{Sym}(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}\]

Then \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) is **unpinned**. Take \(\mathbb{P} := \text{Coll}(\mathbb{N}, \mathbb{R})\).

Question. (Kechris) Is \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) the \(\leq_B\)-least unpinned E.R.?

Zapletal exhibited unpinned: \(F_1 \preceq_B F_2 \preceq_B \cdots \preceq_B E_{\text{inj}}(\text{Sym}(\mathbb{N}))\)

The proof uses the theory of pinned cardinality.
Relationship with pinned cardinality

Let \((X, E)\) be an equivalence relation, \(\mathbb{P}\) be a poset, and \(\tau\) be a \(\mathbb{P}\)-name.

- \((\mathbb{P}, \tau)\) is an \(E\)-pin, if \(\mathbb{P} \times \mathbb{P}\) forces that \(\tau \leq E \tau\).
- An \(E\)-pin \((\mathbb{P}, \tau)\) is trivial if there is \(x \in X\) so that \(\mathbb{P} \vdash \exists x \, E \tau\).
- \(E\) is pinned if all \(E\)-pins are trivial.

Example. Let \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) be the injective part of \(\text{Sym}(\mathbb{N}) \curvearrowright \mathbb{R}^\mathbb{N}\):
\[
(x_n : n \in \mathbb{N}) E_{\text{inj}}(\text{Sym}(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}
\]
Then \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) is unpinned. Take \(\mathbb{P} := \text{Coll}(\mathbb{N}, \mathbb{R})\).

Question. (Kechris) Is \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) the \(\leq_B\)-least unpinned E.R. ?

Zapletal exhibited unpinned: \(F_1 \not\leq_B F_2 \not\leq_B \cdots \not\leq_B E_{\text{inj}}(\text{Sym}(\mathbb{N}))\)
The proof uses the theory of pinned cardinality.
The minimum of the above sequence and the minimum of our sequence:
\(E_{\text{inj}}(P_2) \not\leq_B E_{\text{inj}}(P_3) \not\leq_B E_{\text{inj}}(P_4) \not\leq_B \cdots\) have pinned cardinality \(\aleph_1\).
Relationship with pinned cardinality

Let \((X, E)\) be an equivalence relation, \(\mathbb{P}\) be a poset, and \(\tau\) be a \(\mathbb{P}\)-name.

- \((\mathbb{P}, \tau)\) is an \(E\)-pin, if \(\mathbb{P} \times \mathbb{P}\) forces that \(\tau_lE\tau_r\).
- An \(E\)-pin \((\mathbb{P}, \tau)\) is trivial if there is \(x \in X\) so that \(\mathbb{P} \vdash \overset{x\text{E}}{\tau}\)
- \(E\) is pinned if all \(E\)-pins are trivial.

Example. Let \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) be the injective part of \(\text{Sym}(\mathbb{N}) \curvearrowright \mathbb{R}^\mathbb{N}:\)
\[(x_n : n \in \mathbb{N})E_{\text{inj}}(\text{Sym}(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}\]
Then \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) is unpinned. Take \(\mathbb{P} := \text{Coll}(\mathbb{N}, \mathbb{R})\).

Question. (Kechris) Is \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) the \(\leq_B\)-least unpinned E.R. ?

Zapletal exhibited unpinned: \(F_1 \not\leq_B F_2 \not\leq_B \cdots \not\leq_B E_{\text{inj}}(\text{Sym}(\mathbb{N}))\)
The proof uses the theory of pinned cardinality.
The minimum of the above sequence and the minimum of our sequence:
\(E_{\text{inj}}(P_2) \not\leq_B E_{\text{inj}}(P_3) \not\leq_B E_{\text{inj}}(P_4) \not\leq_B \cdots\) have pinned cardinality \(\aleph_1\).

Corollary. (P., Shani) \(E_{\text{inj}}(P_2)) \not\leq_B F_1\).
Relationship with pinned cardinality

Let \((X, E)\) be an equivalence relation, \(\mathbb{P}\) be a poset, and \(\tau\) be a \(\mathbb{P}\)-name.

- \((\mathbb{P}, \tau)\) is an \(E\)-pin, if \(\mathbb{P} \times \mathbb{P}\) forces that \(\tau_l E \tau_r\).
- An \(E\)-pin \((\mathbb{P}, \tau)\) is trivial if there is \(x \in X\) so that \(\mathbb{P} \models \check{x} E \tau\).
- \(E\) is **pinned** if all \(E\)-pins are trivial.

Example. Let \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) be the injective part of \(\text{Sym}(\mathbb{N}) \subset \mathbb{R}^\mathbb{N}\):
\[
(x_n : n \in \mathbb{N}) E_{\text{inj}}(\text{Sym}(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}
\]
Then \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) is **unpinned**. Take \(\mathbb{P} := \text{Coll}(\mathbb{N}, \mathbb{R})\).

Question. (Kechris) Is \(E_{\text{inj}}(\text{Sym}(\mathbb{N}))\) the \(\leq_B\)-least unpinned E.R.?

Zapletal exhibited unpinned:
\[
F_1 \preceq_B F_2 \preceq_B \cdots \preceq_B E_{\text{inj}}(\text{Sym}(\mathbb{N}))
\]

The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence:
\[
E_{\text{inj}}(P_2) \preceq_B E_{\text{inj}}(P_3) \preceq_B E_{\text{inj}}(P_4) \preceq_B \cdots
\]
have pinned cardinality \(\aleph_1\).

Corollary. (P., Shani) \(E_{\text{inj}}(P_2)) \preceq_B F_1\).

Question. What about the converse? Is there a nice basis for the class of unpinned equivalence relations under Borel reductions?
1 Some words on the proof
Main theorem

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

1. $\dim(Q) \leq n$;
2. P is locally-finite and $(n + 1)$–free.

Then, $E_{\text{inj}}(P)$ is strongly ergodic against $E_{\text{inj}}(Q)$. So, $E_{\text{inj}}(P) \not\preceq_B E_{\text{inj}}(Q)$.
Main theorem

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that:

1. $\dim(Q) \leq n$;
2. P is locally-finite and $(n + 1)$–free.

Then, $E_{\text{inj}}(P)$ is strongly ergodic against $E_{\text{inj}}(Q)$. So, $E_{\text{inj}}(P) \not\leq_B E_{\text{inj}}(Q)$.

The proof employs/builds on symmetric model techniques.
Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively and $x \mapsto N^x$ and $y \mapsto M^y$ be classifications by countable structures of E and F respectively. Then, the following are equivalent.

1. For every Borel homomorphism $f : (X_0, E) \to (Y, F)$, where $X_0 \subseteq X$ is non-meager, f maps a non-meager set into a single F-class;

2. If $x \in X$ is Cohen-generic over V and M is a potential F-invariant in $V(N^x)$, definable from N^x and parameters in V, then $M \in V$.
The basic Cohen model

Recall Cohen’s proof that $\text{ZF} + \neg\text{AC}$ is consistent.
The basic Cohen model

Recall Cohen’s proof that $ZF + \neg AC$ is consistent.

Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

$$(x_n^G : n \in \mathbb{N})$$
The basic Cohen model

Recall Cohen’s proof that $\text{ZF} + \neg\text{AC}$ is consistent. Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

$$ (x^G_n : n \in \mathbb{N}) $$

Between V and $V[G]$ there is the intermediate “symmetric model”:

$$ V(\{x^G_n : n \in \mathbb{N}\}) $$

This can be defined in a number of equivalent ways:

- it consists of the realization of all symmetric names ($\text{Sym}(\mathbb{N}) \leq \mathbb{P}$);
- it is the smallest ZF-extension of V in $V[G]$ containing $\{x^G_n : n \in \mathbb{N}\}$.
The basic Cohen model

Recall Cohen’s proof that $\text{ZF} + \neg \text{AC}$ is consistent.
Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

$$(x^G_n : n \in \mathbb{N})$$

Between V and $V[G]$ there is the intermediate “symmetric model’’:

$$V(\{x^G_n : n \in \mathbb{N}\})$$

This can be defined in a number of equivalent ways:

- it consists of the realization of all symmetric names ($\text{Sym}(\mathbb{N}) \bowtie \mathbb{P}$);
- it is the smallest ZF-extension of V in $V[G]$ containing $\{x^G_n : n \in \mathbb{N}\}$.

Theorem. (Cohen) In $V(\{x^G_n\})$ there is no injection $\mathbb{N} \to \{x^G_n : n \in \mathbb{N}\}$
The basic Cohen model

Recall Cohen’s proof that $\text{ZF} + \neg \text{AC}$ is consistent. Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

$$\left(x_n^G : n \in \mathbb{N} \right)$$

Between V and $V[G]$ there is the intermediate “symmetric model”:

$$V(\{x_n^G : n \in \mathbb{N}\})$$

This can be defined in a number of equivalent ways:

- it consists of the realization of all symmetric names ($\text{Sym}(\mathbb{N}) \bowtie \mathbb{P}$);
- it is the smallest ZF-extension of V in $V[G]$ containing $\{x_n^G : n \in \mathbb{N}\}$.

Theorem. (Cohen) In $V(\{x_n^G\})$ there is no injection $\mathbb{N} \to \{x_n^G : n \in \mathbb{N}\}$

Lemma. (Existence of supports) For any $S \in V(\{x_n^G\})$ with $S \subseteq V$ there is a finite $F \subseteq \{x_n^G : n \in \mathbb{N}\}$ so that $S \in V[F]$.
Symmetric models from permutation groups

In the basic Cohen model the action $\text{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G : n \in \mathbb{N}) \mapsto \{x_n^G : n \in \mathbb{N}\}$$
Symmetric models from permutation groups

In the basic Cohen model the action $\text{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G : n \in \mathbb{N}) \mapsto \{x_n^G : n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^\mathbb{N}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G : n \in \mathbb{N})$ is injective.
Symmetric models from permutation groups

In the basic Cohen model the action $\text{Sym}(\mathbb{N}) \acts \mathbb{P}$ gave:

$$(x_n^G : n \in \mathbb{N}) \mapsto \{x_n^G : n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \acts \mathbb{R}^\mathbb{N}$ is essentially $P \acts \mathbb{P}$, and the generic $(x_n^G : n \in \mathbb{N})$ is injective. But $P = \text{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N}. We have

$$(x_n^G : n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G : n \in \mathbb{N}\}$.
Symmetric models from permutation groups

In the basic Cohen model the action $\text{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G : n \in \mathbb{N}) \mapsto \{x_n^G : n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^\mathbb{N}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G : n \in \mathbb{N})$ is injective. But $P = \text{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N}. We have

$$(x_n^G : n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G : n \in \mathbb{N}\}$.

We have the intermediate symmetric model $V \subseteq V(\mathcal{N}^G) \subseteq V[G]$:

- it consists of the realization of all symmetric names $(P \curvearrowright \mathbb{P})$;
- it is the smallest ZF-extension of V in $V[G]$ containing \mathcal{N}^G.
Symmetric models from permutation groups

In the basic Cohen model the action \(\text{Sym}(\mathbb{N}) \ltimes \mathbb{P} \) gave:

\[
(x_n^G : n \in \mathbb{N}) \mapsto \{x_n^G : n \in \mathbb{N}\}
\]

If \(P \) is a Polish permutation group, then the Bernoulli shift action \(P \ltimes \mathbb{R}^\mathbb{N} \) is essentially \(P \ltimes \mathbb{P} \), and the generic \((x_n^G : n \in \mathbb{N}) \) is injective. But \(P = \text{Aut}(\mathcal{N}) \) for some countable structure \(\mathcal{N} \) on \(\mathbb{N} \). We have

\[
(x_n^G : n \in \mathbb{N}) \mapsto \mathcal{N}^G
\]

where \(\mathcal{N}^G \) is the structure \(\mathcal{N} \) copied on \(\{x_n^G : n \in \mathbb{N}\} \).

We have the intermediate symmetric model \(V \subseteq V(\mathcal{N}^G) \subseteq V[G] \):

- it consists of the realization of all \textbf{symmetric} names \((P \ltimes \mathbb{P}) \);
- it is the smallest ZF-extension of \(V \) in \(V[G] \) containing \(\mathcal{N}^G \).

Lemma ((P., Shani) Existence of supports)

\textit{If \(P \) is a \textbf{locally-finite} Polish permutation group, then for all \(S \in V(\mathcal{N}^G) \) with \(S \subseteq V \) there is a finite \(F \subseteq \{x_n^G : n \in \mathbb{N}\} \) so that \(S \in V[F] \).}
To conclude:

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively and $x \mapsto \mathcal{N}^x$ and $y \mapsto \mathcal{M}^y$ be classifications by countable structures of E and F respectively. Then, the following are equivalent.

1. For every Borel homomorphism $f : (X_0, E) \to (Y, F)$, where $X_0 \subseteq X$ is non-meager, f maps a non-meager set into a single F-class;
2. If $x \in X$ is Cohen-generic over V and \mathcal{M} is a potential F-invariant in $V(N^x)$, definable from N^x and parameters in V, then $\mathcal{M} \in V$.

In the case of the Bernoulli shifts, we have that $P = \text{Aut}(\mathcal{N})$ and $Q = \text{Aut}(\mathcal{M})$ for countable structures \mathcal{M} and \mathcal{N}. So we have that:

$$P \preccurlyeq \text{Inj}(\mathbb{N}, \mathbb{R}) \text{ is classified by } (x_n : n \in \mathbb{N}) \mapsto \text{“} \mathcal{N} \text{ on } \{x_n : n \in \mathbb{N}\} \text{”}$$

$$Q \preccurlyeq \text{Inj}(\mathbb{N}, \mathbb{R}) \text{ is classified by } (y_n : n \in \mathbb{N}) \mapsto \text{“} \mathcal{M} \text{ on } \{y_n : n \in \mathbb{N}\} \text{”}$$
Thank you!