Isomorphism of locally compact Polish metric structures

Maciej Malicki

Institute of Mathematics, Polish Academy of Sciences

April 20, 2022
A **structure** is a set M equipped with relations R_i, $i \in I$, functions f_j, $j \in J$, and constants c_k, $k \in K$.

Examples:

- graphs (R, E),
- Boolean algebras $(B, \wedge, \vee, −, 0, 1)$,
- metric spaces $(M, \{d_r\}_{r \in R})$, $R \subseteq \mathbb{R}^+$.
Let L be a relational signature L, with n_i the arity of relational symbol R_i, $i \in I$. Then $\text{Mod}(L) = \prod_{i \in I} 2^{|N|^{n_i}}$ is the space of codes of all countable L-structures with universe \mathbb{N}.
The space of countable structures and the logic action

Let L be a relational signature L, with n_i the arity of relational symbol R_i, $i \in I$. Then $\text{Mod}(L) = \prod_{i \in I} 2^{\mathbb{N}^{n_i}}$ is the space of codes of all countable L-structures with universe \mathbb{N}.

The group S_∞, acting on $\text{Mod}(L)$ by permuting the universe, induces the isomorphism equivalence relation \cong on $\text{Mod}(L)$. In particular, Vaught transforms can be used:
The space of countable structures and the logic action

Let L be a relational signature L, with n_i the arity of relational symbol R_i, $i \in I$. Then $\text{Mod}(L) = \prod_{i \in I} 2^{\mathbb{N}^{n_i}}$ is the space of codes of all countable L-structures with universe \mathbb{N}.

The group S_∞, acting on $\text{Mod}(L)$ by permuting the universe, induces the isomorphism equivalence relation \cong on $\text{Mod}(L)$. In particular, Vaught transforms can be used:

For open $U \subseteq S_\infty$, and $A \subseteq \text{Mod}(L)$

$$M \in A^*_U \iff \forall^* g \in U \ g. M \in A.$$
$\mathcal{L}_{\omega_1 \omega}$ and its fragments

We will work in the setting of infinitary logic $\mathcal{L}_{\omega_1 \omega}$, i.e., an extension of the finitary logic $\mathcal{L}_{\omega \omega}$ allowing for countably infinite conjunctions $\bigwedge_i \phi_i$, and disjunctions $\bigvee_i \phi_i$.
$L_{\omega_1 \omega}$ and its fragments

We will work in the setting of infinitary logic $L_{\omega_1 \omega}$, i.e., an extension of the finitary logic $L_{\omega \omega}$ allowing for countably infinite conjunctions $\bigwedge_i \phi_i$, and disjunctions $\bigvee_i \phi_i$.

A (countable) fragment F is a countable set of $L_{\omega_1 \omega}$-formulas containing all $L_{\omega \omega}$-formulas, and closed under \land, \lor, \neg, and \exists. We can talk about F-theories, F-types, type spaces $S_n(T)$, spaces $\text{Mod}(T) \subseteq \text{Mod}(L)$ of models of a theory T, isomorphism relations \cong_T on $\text{Mod}(T)$, etc.
\(\mathcal{L}_{\omega_1\omega} \) and its fragments

We will work in the setting of infinitary logic \(\mathcal{L}_{\omega_1\omega} \), i.e., an extension of the finitary logic \(\mathcal{L}_{\omega\omega} \) allowing for countably infinite conjunctions \(\bigwedge_i \phi_i \), and disjunctions \(\bigvee_i \phi_i \).

A (countable) **fragment** \(F \) is a countable set of \(\mathcal{L}_{\omega_1\omega} \)-formulas containing all \(\mathcal{L}_{\omega\omega} \)-formulas, and closed under \(\land, \lor, \neg \), and \(\exists \). We can talk about \(F \)-theories, \(F \)-types, type spaces \(S_n(T) \), spaces \(\text{Mod}(T) \subseteq \text{Mod}(L) \) of models of a theory \(T \), isomorphism relations \(\cong_T \) on \(\text{Mod}(T) \), etc.

The space \(S_n(T) \) of all \(n \)-\(F \)-types is equipped with the logic topology \(\tau_n \) with basis consisting of sets \([\phi]\), defined by \(\text{tp}(\bar{a}) \in [\phi] \) iff \(\phi^M(\bar{a}) = 1 \), where \(\phi \in F \), \(M \in \text{Mod}(T) \), \(\bar{a} \) is a tuple in \(M \).

In a similar fashion, we can define a topology \(t_F \) on \(\text{Mod}(L) \).
An equivalence relation E on a Polish space X is (Borel) reducible to an equivalence relation F on a Polish space Y if there is a Borel mapping $f : X \to Y$ such that, for any $x_1, x_2 \in X$,

$$x_1 \ E \ x_2 \iff f(x_1) \ F \ f(x_2).$$
Complexity of equivalence relations

An equivalence relation \(E \) on a Polish space \(X \) is \textbf{(Borel)} reducible to an equivalence relation \(F \) on a Polish space \(Y \) if there is a Borel mapping \(f : X \to Y \) such that, for any \(x_1, x_2 \in X \),

\[
x_1 \ E \ x_2 \iff f(x_1) \ F \ f(x_2).
\]

Important types of equivalence relations:

- smooth, i.e., reducible to the identity,
- essentially countable, i.e., reducible to a relation with countable classes,
- classifiable by countable structures, i.e., reducible to the isomorphism relation on a Borel class of countable structures.
$\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set $A \subseteq \text{Mod}(L)$ is of the form $\text{Mod}(T)$ for some countable theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.
\(\mathcal{L}_{\omega_1 \omega} \) and descriptive set theory

Theorem (Lopez-Escobar)

Let \(L \) be a signature. Every isomorphism-invariant Borel set \(A \subseteq \text{Mod}(L) \) is of the form \(\text{Mod}(T) \) for some countable theory \(T \subseteq \mathcal{L}_{\omega_1 \omega} \).

Theorem (Hjorth-Kechris)

Let \(T \) be a countable theory, and let \(\cong_T \) be the isomorphism relation on \(\text{Mod}(T) \). TFAE:

1. \(\cong_T \) is essentially countable,
2. there exists a fragment \(F \) such that for every \(M \in \text{Mod}(T) \), there is a tuple \(\bar{a} \) such that \(\text{Th}_F(M, \bar{a}) \) is \(\aleph_0 \)-categorical.
$\mathcal{L}_{\omega_1 \omega}$ and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set $A \subseteq \text{Mod}(L)$ is of the form $\text{Mod}(T)$ for some countable theory $T \subseteq \mathcal{L}_{\omega_1 \omega}$.

Theorem (Hjorth-Kechris)

Let T be a countable theory, and let \equiv_T be the isomorphism relation on $\text{Mod}(T)$. TFAE:

1. \equiv_T is essentially countable,

2. there exists a fragment F such that for every $M \in \text{Mod}(T)$, there is a tuple \bar{a} such that $\text{Th}_F(M, \bar{a})$ is \aleph_0-categorical.

Corollary

Isomorphism of finitely generated countable groups is essentially countable.
A **metric structure** is a complete and bounded metric space (M, d) equipped with bounded uniformly continuous functions $R_i : M^{n_i} \to \mathbb{R}$, $i \in I$ (relations), uniformly continuous functions $f_j : M^{n_j} \to M$, $j \in J$, and constants c_k, $k \in K$.

A metric signature consists of relation (including the metric), function, and constant symbols, as well as arities, moduli of continuity $\Delta : [0, +\infty)^n \to [0, +\infty)$, and bounds $I \subseteq \mathbb{R}$ for relation symbols. Each of the relations and functions of a metric structure in a given signature must respect its modulus of continuity. Each of the relations must respect its bound.
Metric structures

A **metric structure** is a complete and bounded metric space \((M, d)\) equipped with bounded uniformly continuous functions \(R_i : M^{n_i} \to \mathbb{R}, i \in I\) (relations), uniformly continuous functions \(f_j : M^{n_j} \to M, j \in J\), and constants \(c_k, k \in K\).

A metric signature consists of relation (including the metric), function, and constant symbols, as well as arities, moduli of continuity \(\Delta : [0, +\infty)^n \to [0, +\infty)\), and bounds \(I \subseteq \mathbb{R}\) for relation symbols. Each of the relations and functions of a metric structure in a given signature must respect its modulus of continuity. Each of the relations must respect its bound.

Examples:

- Complete metric spaces \((M, d)\);
- Measure algebras \((B, d, \wedge, \vee, 0, 1)\);
- Banach spaces, \(C^*\)-algebras, etc.
Let L be a countable relational signature L, with n_i the arity of relation R_i, $i \in I$, where $R_0 = d$. Then $\text{Mod}(L) \subseteq \prod_{i \in I} \mathbb{R}^{\mathbb{N}^{n_i}}$ is the space of codes of all Polish metric structures with universe containing \mathbb{N} as a (tail-)dense subset of M.

Remark: No Vaught transforms. However, for $M \in \text{Mod}(L)$, let $D \subseteq M^\mathbb{N}$ be the Polish space of all tail-dense sequences in M, and $\pi: D \to [M]$ a natural projection from D onto the isomorphism class $[M]$ of M. For $A \subseteq \text{Mod}(L)$, $\bar{a} \in \mathbb{N}^\prec \mathbb{N}$, and $u \in \mathbb{Q}^+$, put $M \in A^* \bar{a}, u \iff \forall^* y \in B_D(M) < u(\bar{a})(\pi(y) \in A)$.

The space of Polish metric structures
The space of Polish metric structures

Let L be a countable relational signature L, with n_i the arity of relation R_i, $i \in I$, where $R_0 = d$. Then $\text{Mod}(L) \subseteq \prod_{i \in I} \mathbb{R}^{\mathbb{N}^{n_i}}$ is the space of codes of all Polish metric structures with universe containing \mathbb{N} as a (tail-)dense subset of M.

Remark: No Vaught transforms. However, for $M \in \text{Mod}(L)$, let $D \subseteq M^\mathbb{N}$ be the Polish space of all tail-dense sequences in M, and $\pi : D \rightarrow [M]$ a natural projection from D onto the isomorphism class $[M]$ of M. For $A \subseteq \text{Mod}(L)$, $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, and $u \in \mathbb{Q}^+$, put

$$M \in A^{*\bar{a},u} \leftrightarrow \forall^* y \in B_{<u}^{D(M)}(\bar{a})(\pi(y) \in A),$$
Continuous $\mathcal{L}_{\omega\omega}$ and $\mathcal{L}_{\omega_1\omega}$

Formulas of continuous finitary logic $\mathcal{L}_{\omega\omega}$ are defined using

- continuous functions $s : [a, b]^n \to [a, b]$ as connectives. Alternatively: polynomials or just $\{0, 1, \frac{x}{2}, \cdot, +, -\}$,

- inf and sup as quantifiers.
Continuous $\mathcal{L}_{\omega\omega}$ and $\mathcal{L}_{\omega_1\omega}$

Formulas of continuous finitary logic $\mathcal{L}_{\omega\omega}$ are defined using

- continuous functions $s : [a, b]^n \rightarrow [a, b]$ as connectives.
 Alternatively: polynomials or just $\{0, 1, \frac{x}{2}, \cdot, +, -\}$,
- inf and sup as quantifiers.

Analogs of infinite conjunctions and disjunctions in the continuous infinitary logic $\mathcal{L}_{\omega_1\omega}$ are defined with $\inf_i \phi_i, \sup_i \phi_i$ as infinitary connectives, provided that all ϕ_i respect a single modulus of continuity and bound.
Type spaces

For a given fragment F, and F-theory T, the type $p = \text{tp}(\bar{a})$ of \bar{a} in $M \in \text{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$.

The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some $s < r$. We can also define t_F on $\text{Mod}(L)$. There is also a natural (complete) metric ∂ on $S_n(T)$. For $F = L_{\omega\omega}$, it can be defined by $\partial(p, q) = \inf \{d_M(\bar{a}, \bar{b}) : M \models T, \bar{a}, \bar{b} \in M^n, \text{tp}(\bar{a}) = p, \text{tp}(\bar{b}) = q\}$. In general, $\partial(p, q) = \sup_{\phi \in F_1} |p(\phi) - q(\phi)|$, where F_1 are 1-Lipschitz formulas.
Type spaces

For a given fragment F, and F-theory T, the type $p = \text{tp}(\bar{a})$ of \bar{a} in $M \in \text{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$.

The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some $s < r$. We can also define t_F on $\text{Mod}(L)$.
Type spaces

For a given fragment F, and F-theory T, the type $p = \text{tp}(\bar{a})$ of \bar{a} in $M \in \text{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$.

The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some $s < r$. We can also define t_F on $\text{Mod}(L)$.

There is also a natural (complete) metric ∂ on $S_n(T)$. For $F = \mathcal{L}_{\omega\omega}$, it can be defined by

$$\partial(p, q) = \inf \{ d^M(\bar{a}, \bar{b}) : M \models T, \, \bar{a}, \bar{b} \in M^n, \, \text{tp}(\bar{a}) = p, \text{tp}(\bar{b}) = q \}$$
For a given fragment F, and F-theory T, the type $p = \text{tp}(\bar{a})$ of \bar{a} in $M \in \text{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$.

The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some $s < r$. We can also define t_F on $\text{Mod}(L)$.

There is also a natural (complete) metric ∂ on $S_n(T)$. For $F = \mathcal{L}_{\omega\omega}$, it can be defined by

$$\partial(p, q) = \inf \{ d^M(\bar{a}, \bar{b}) : M \models T, \bar{a}, \bar{b} \in M^n, \text{tp}(\bar{a}) = p, \text{tp}(\bar{b}) = q \}$$

In general,

$$\partial(p, q) = \sup_{\phi \in F_1} |p(\phi) - q(\phi)|,$$

where F_1 are 1-Lipschitz formulas.
Continuous $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Ben Yaacov-Doucha-Nies-Tsankov)

Every isomorphism-invariant Borel set $A \subseteq \text{Mod}(L)$ is of the form $\text{Mod}(T)$ for some (countable) theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.
Continuous $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Ben Yaacov-Doucha-Nies-Tsankov)

Every isomorphism-invariant Borel set $A \subseteq \text{Mod}(L)$ is of the form $\text{Mod}(T)$ for some (countable) theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Theorem (Hallbäck, M., Tsankov)

Let T be a theory with locally compact Polish models. TFAE:

1. \cong_T is essentially countable,
2. there exists a fragment F such that for every $M \in \text{Mod}(T)$, there is $k \in \mathbb{N}$ such that the set

 \[\{ \bar{a} \in M^k : \text{Th}_F(M, \bar{a}) \text{ is } \aleph_0\text{-rigid} \} \]

 has non-empty interior in M^k.

Continuous $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Ben Yaacov-Doucha-Nies-Tsankov)

Every isomorphism-invariant Borel set $A \subseteq \text{Mod}(L)$ is of the form $\text{Mod}(T)$ for some (countable) theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Theorem (Hallbäck, M., Tsankov)

Let T be a theory with locally compact Polish models. TFAE:

1. \cong_T is essentially countable,

2. there exists a fragment F such that for every $M \in \text{Mod}(T)$, there is $k \in \mathbb{N}$ such that the set

$$\{ \bar{a} \in M^k : \text{Th}_F(M, \bar{a}) \text{ is } \aleph_0\text{-rigid} \}$$

has non-empty interior in M^k.

Corollary (Kechris)

Every orbit equivalence relation induced by a locally compact Polish group is essentially countable.
Theorem (M.)

Let T be a countable theory with locally compact models. Then \cong_T is classifiable by countable structures.
\(\alpha \)-AE families

Let \(\beta = 0 \) or a limit ordinal.
α-AE families

Let $\beta = 0$ or a limit ordinal.

▸ An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.

Moreover, every α-AE family $P(\bar{x}) = \{ p_{k,l}(\bar{x}_{k,l}) \}$, $\alpha \geq 1$, comes equipped with a fixed $u_{P} \geq 0$ such that $u_{P} \geq u_{p_{k,l}}$, $k, l \in \mathbb{N}$.

Let $\beta = 0$ or a limit ordinal.

- An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.
- A β-AE family $P(\bar{x})$ is a collection of γ-AE families $p_k(\bar{x})$, $k \in \mathbb{N}, \gamma < \beta$.
\(\alpha\)-AE families

Let \(\beta = 0\) or a limit ordinal.

- An \((-1)\)-AE family \(P(\bar{x})\) is a formula \(\phi(\bar{x})\) in \(F\).
- A \(\beta\)-AE family \(P(\bar{x})\) is a collection of \(\gamma\)-AE families \(p_k(\bar{x})\), \(k \in \mathbb{N}\), \(\gamma < \beta\).
- A \((\beta + 1)\)-AE family \(P(\bar{x})\) is a collection of \(\gamma\)-AE families \(p_{k,l}(\bar{x}_{k,l})\), \(\gamma < \beta\), \(k, l \in \mathbb{N}\), \(\bar{x} \subseteq \bar{x}_{k,l}\).
α-AE families

Let $\beta = 0$ or a limit ordinal.

- An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.
- A β-AE family $P(\bar{x})$ is a collection of γ-AE families $p_k(\bar{x})$, $k \in \mathbb{N}$, $\gamma < \beta$.
- A $(\beta + 1)$-AE family $P(\bar{x})$ is a collection of γ-AE families $p_{k,l}(\bar{x}_{k,l})$, $\gamma < \beta$, $k, l \in \mathbb{N}$, $\bar{x} \subseteq \bar{x}_{k,l}$.
- A $(\beta + n)$-AE family $P(\bar{x})$, $2 \leq n < \omega$, is a collection of $(\beta + n - 2)$-AE families $p_{k,l}(\bar{x}_{k,l})$, $k, l \in \mathbb{N}$, $\bar{x} \subseteq \bar{x}_{k,l}$.
\textbf{\(\alpha\)-AE families}

Let \(\beta = 0\) or a limit ordinal.

\begin{itemize}
 \item An \((-1)\)-AE family \(P(\bar{x})\) is a formula \(\phi(\bar{x})\) in \(F\).
 \item A \(\beta\)-AE family \(P(\bar{x})\) is a collection of \(\gamma\)-AE families \(p_k(\bar{x})\), \(k \in \mathbb{N}, \gamma < \beta\).
 \item A \((\beta + 1)\)-AE family \(P(\bar{x})\) is a collection of \(\gamma\)-AE families \(p_{k,l}(\bar{x}_{k,l})\), \(\gamma < \beta, k, l \in \mathbb{N}, \bar{x} \subseteq \bar{x}_{k,l}\).
 \item A \((\beta + n)\)-AE family \(P(\bar{x})\), \(2 \leq n < \omega\), is a collection of \((\beta + n - 2)\)-AE families \(p_{k,l}(\bar{x}_{k,l})\), \(k, l \in \mathbb{N}, \bar{x} \subseteq \bar{x}_{k,l}\).
\end{itemize}

Moreover, every \(\alpha\)-AE family \(P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}\), \(\alpha \geq 1\), comes equipped with a fixed \(u_P \geq 0\) such that \(u_P \geq u_{p_{k,l}}, k, l \in \mathbb{N}\).
α-AE families

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in \text{Mod}(L)$ realizes a
α-AE families

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in \text{Mod}(L)$ realizes a

- (-1)-AE family $P(\bar{x}) = \phi(\bar{a})$ if $\phi^M(\bar{a}) = 0$,
\(\alpha\)-AE families

For \(\beta = 0\) or a limit ordinal, a tuple \(\bar{a}\) in \(M \in \text{Mod}(L)\) realizes a

- \((-1)\)-AE family \(P(\bar{x}) = \phi(\bar{a})\) if \(\phi^M(\bar{a}) = 0\),
- \(\beta\)-AE family \(P(\bar{x})\) if it realizes every \(p(\bar{x}) \in P(\bar{x})\),
\(\alpha\)-AE families

For \(\beta = 0\) or a limit ordinal, a tuple \(\bar{a}\) in \(M \in \text{Mod}(L)\) realizes a

- \((-1)\)-AE family \(P(\bar{x}) = \phi(\bar{a})\) if \(\phi^M(\bar{a}) = 0\),
- \(\beta\)-AE family \(P(\bar{x})\) if it realizes every \(p(\bar{x}) \in P(\bar{x})\),
- \((\beta + n)\)-AE family \(P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}, 1 \leq n < \omega\), if it holds in \(M\) that

\[
\forall \bar{b} \in B_{\uparrow P}^M(\bar{a}) \forall \bar{v} > 0 \forall k \exists \bar{c} \in B_{\downarrow \bar{v}}^M(\bar{b}) \exists l (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).
\]
\(\alpha\)-AE families

For \(\beta = 0\) or a limit ordinal, a tuple \(\bar{a}\) in \(M \in \text{Mod}(L)\) realizes a

- \((-1)\)-AE family \(P(\bar{x}) = \phi(\bar{a})\) if \(\phi^M(\bar{a}) = 0\),
- \(\beta\)-AE family \(P(\bar{x})\) if it realizes every \(p(\bar{x}) \in P(\bar{x})\),
- \((\beta + n)\)-AE family \(P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}, 1 \leq n < \omega\), if it holds in \(M\) that

\[\forall \bar{b} \in B_u^M(\bar{a}) \forall v > 0 \forall k \exists \bar{c} \in B_v^M(\bar{b}) \exists l (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).\]

Remark: For a countable \(M\),

\[\forall \bar{b} \supseteq \bar{a} \forall k \exists \bar{c} \supseteq \bar{b} \exists l (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).\]
For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in \text{Mod}(L)$ realizes a

- (-1)-AE family $P(\bar{x}) = \phi(\bar{a})$ if $\phi^M(\bar{a}) = 0$,
- β-AE family $P(\bar{x})$ if it realizes every $p(\bar{x}) \in P(\bar{x})$,
- $(\beta + n)$-AE family $P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}$, $1 \leq n < \omega$, if it holds in M that

$$\forall \bar{b} \in B^M_{u_p} (\bar{a}) \forall v > 0 \forall k \exists \bar{c} \in B^M_{v} (\bar{b}) \exists l (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).$$

Remark: For a countable M,

$$\forall \bar{b} \supseteq \bar{a} \forall k \exists \bar{c} \supseteq \bar{b} \exists l (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).$$

If \emptyset in M realizes $P(\emptyset)$, we say that M **models** P.
AE families and Borel complexity

Let F be fragment in signature L, and let $2 \leq \alpha < \omega_1$. Let $m = 1$ if $\alpha < \omega$, and $m = 0$ otherwise.

Theorem

Suppose that $A \in \Pi^0_\alpha(t_F)$ for some $A \subseteq \text{Mod}(L)$. For every $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, and $u \in \mathbb{Q}^+$, there exists an $(\alpha - m)$-AE family $P(\bar{x})$ such that

$$A^{*\bar{a},u} = \{ N \in \text{Mod}(L) : \bar{a} \text{ realizes } P(\bar{x}) \text{ in } N \}.$$

Corollary

Suppose that $[M] \in \Pi^0\alpha(t_F)$ for some $M \in \text{Mod}(L)$. There exists an $(\alpha - m)$-AE family P_M such that

$$[M] = \{ N \in \text{Mod}(L) : N \text{ models } P_M \}.$$
Locally compact structures

For a theory T, locally compact $M \in \text{Mod}(T)$, $n \in \mathbb{N}$, and n-tuple \bar{a} in M, let

$$\rho(\bar{a}) = \sup\{r \in \mathbb{R} : \overline{B_{\leq r}^M(\bar{a})} \text{ is compact}\},$$

$$\Theta_n(M) = \{\text{tp}(\bar{b}) : \bar{b} \in M^n\}.$$
Locally compact structures

For a theory T, locally compact $M \in \text{Mod}(T)$, $n \in \mathbb{N}$, and n-tuple \bar{a} in M, let

$$\rho(\bar{a}) = \sup \{ r \in \mathbb{R} : B_{<r}^M(\bar{a}) \text{ is compact} \},$$

$$\Theta_n(M) = \{ \text{tp}(\bar{b}) : \bar{b} \in M^n \}.$$

Fix a countable basis $\mathcal{U}_n = \{U_{l,n} \}$ for each τ_n, and put $\mathcal{U} = \bigcup_n \mathcal{U}_n$. For $U \in \mathcal{U}_n$, and $\epsilon > 0$, (U, ϵ) is \bar{a}-good in M if

- $\text{tp}(\bar{a}) \in U$,
- $2\epsilon < \rho(\bar{a})$,
- there is $\delta > 0$ such that $U \cap B_{<2\epsilon}(\text{tp}(\bar{a})) \subseteq B_{<\epsilon-\delta}(\text{tp}(\bar{a}))$.

For every $\delta > 0$ there exist $U \in \mathcal{U}$ and $0 < \epsilon < \delta$ such that (U, ϵ) is \bar{a}-good,

if (U, ϵ) is \bar{a}-good, then

$$\overline{B_{<\epsilon}(tp(\bar{a})) \cap U^T} \subseteq \Theta_{|\bar{a}|}(M),$$

if (U, ϵ) is \bar{a}-good, there is $\delta > 0$ such that $d(\bar{a}, \bar{a}') < \delta$ implies that (U, ϵ) is \bar{a}'-good, and

$$U \cap B_{<\epsilon}(tp(\bar{a})) = U \cap B_{<\epsilon}(tp(\bar{a}')).$$
Locally compact structures

For \(\bar{a} \in \mathbb{N}^{<\mathbb{N}}, U \in \mathcal{U}_n, \) and \(\epsilon \in \mathbb{Q}^+ \), define

\[
T^0_{U,\epsilon}(\bar{a}) = B_{<\epsilon}(\text{tp}(\bar{a})) \cap U^\tau,
\]

if \((U, \epsilon) \) is \(\bar{a} \)-good,

\[
T^0_{U,\epsilon}(\bar{a}) = \emptyset,
\]

otherwise, and

\[
T^\alpha_{U,\epsilon}(\bar{a}) = \{ T^\beta_{U',\epsilon'}(\bar{a}') : \beta < \alpha, |\bar{a}'| \geq |\bar{a}|, U' \in \mathcal{U}_{|\bar{a}'|}, U' \upharpoonright |\bar{a}| \subseteq U, \epsilon' \leq \epsilon \}
\]

for \(\alpha > 0 \). Also, for \(u > 0 \), put

\[
T^\alpha_u(\bar{a}) = \{ T^\beta_u(v(\bar{b})) : \beta < \alpha, \bar{b} \in B_{\bar{u}}^{<\omega}(\bar{a}), |\bar{b}| \geq |\bar{a}|, U \in \mathcal{U}_{|\bar{b}|}, v > 0 \},
\]

\[
T^\alpha(M) = T^\alpha_1(\emptyset).
\]
Remark: For a countable M, and $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, put

$$tp^0(\bar{a}) = tp(\bar{a}),$$

$$tp^\alpha(\bar{a}) = \{ tp^\beta(\bar{b}) : \beta < \alpha, \bar{b} \in \mathbb{N}^{<\mathbb{N}}, \bar{a} \subseteq \bar{b} \},$$

$$Th^\alpha(M) = tp^\alpha(\emptyset).$$
Theorem

Let F be a fragment, and let T be an F-theory. Suppose that $M, N \in \text{Mod}(T)$ are locally compact, and $T^\alpha_u(\bar{a}) = T^\alpha_u(\bar{a}')$ for some tuples \bar{a}, \bar{a}' in M, N, respectively. Then every α-AE family $P(\bar{x})$ with $u_P \leq u$ realized by \bar{a}', is also realized by \bar{a}.
Locally compact structures

Theorem
Let F be a fragment, and let T be an F-theory. Suppose that $M, N \in \text{Mod}(T)$ are locally compact, and $T^\alpha_u(\bar{a}) = T^\alpha_u(\bar{a}')$ for some tuples \bar{a}, \bar{a}' in M, N, respectively. Then every α-AE family $P(\bar{x})$ with $u_P \leq u$ realized by \bar{a}', is also realized by \bar{a}.

Theorem
Let F be a fragment, and let T be an F-theory with locally compact models. Suppose that $[M] \in \Pi^0_\alpha(t_F)$, $\alpha \geq 2$, for some $M \in \text{Mod}(T)$. Let $m = 1$ if $\alpha < \omega$, and $m = 0$ otherwise. Then

$$[M] = \{N \in \text{Mod}(T) : T^{\alpha-m}(N) = T^{\alpha-m}(M)\}.$$
Locally compact structures

Theorem

Let T be a countable theory with locally compact models. Then \cong_T is classifiable by countable structures.

For $M \in \operatorname{Mod}(T)$, C_M consists of elements

$$x = (B_\epsilon(tp(\bar{a})) \cap U^T, |\bar{a}|, U, \epsilon),$$

where $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, $U \in \mathcal{U}_{|\bar{a}|}$, $\epsilon \in \mathbb{Q}^+$, and (U, ϵ) is \bar{a}-good, and relations O_l, $R_{k,l,\delta}$, $k, l \in \mathbb{N}$, $\delta \in \mathbb{Q}^+$, and E, defined as follows:

- $O_l(x)$ iff $U_{l,|\bar{a}|} \cap B_\epsilon(tp(\bar{a})) \cap U^T = \emptyset$,
- $R_{k,l,\delta}(x)$ iff $k = |\bar{a}|$, $U = U_{l,n}$, $\delta = \epsilon$,
- xEx' iff $|\bar{a}'| \geq |\bar{a}|$, $U' \upharpoonright |\bar{a}| \subseteq U$, $\epsilon' \leq \epsilon$.
Theorem (M.)

Isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism.
Isometry of locally compact Polish metric spaces

Theorem (M.)

Isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism.

A locally compact Polish metric space \((K, d)\), regarded as an element \(\mathcal{K}(\mathcal{U})\) of the hyperspace of Urysohn space, can be coded in a Borel way as \(M_K \in \text{Mod}(L)\) with the trivial signature \(L\), and metric bounded by 1: using the Kuratowski–Ryll-Nardzewski theorem, pick a countable tail-dense subset of \(K\), and replace \(d\) with \(1/(1 + d)\).
Borel isomorphism relations

A relation E on a standard Borel space X is potentially Π^0_α if there is a Polish topology t inducing the Borel structure of X, and such that $E \in \Pi^0_\alpha(t \times t)$.

For $\alpha < \omega_1$, $P^0(\mathbb{N}) = \mathbb{N}$, $P^\alpha(\mathbb{N}) =$ all countable subsets of $P^{<\alpha}(\mathbb{N}) \cup \mathbb{N}$, where $P^{<\alpha}(\mathbb{N}) = \bigcup_{\beta < \alpha} P^\beta(\mathbb{N})$, and $=^\alpha$ is the equality on $P^\alpha(\mathbb{N})$.

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical $L_{\omega_1\omega}$, and let T be an F-theory. If \equiv_T is potentially $\Pi^0_{\alpha+2}$, where $\alpha \geq 1$, then \equiv_T is Borel reducible to $=^\alpha+1$.
A relation E on a standard Borel space X is potentially Π^0_α if there is a Polish topology t inducing the Borel structure of X, and such that $E \in \Pi^0_\alpha(t \times t)$.

For $\alpha < \omega_1$, $\mathcal{P}^0(\mathbb{N}) = \mathbb{N}$, $\mathcal{P}^\alpha(\mathbb{N}) =$ all countable subsets of $\mathcal{P}^{<\alpha}(\mathbb{N}) \cup \mathbb{N}$, where $\mathcal{P}^{<\alpha}(\mathbb{N}) = \bigcup_{\beta < \alpha} \mathcal{P}^\beta(\mathbb{N})$, and $=_{\alpha}$ is the equality on $\mathcal{P}^\alpha(\mathbb{N})$.

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical $\mathcal{L}_{\omega_1\omega}$, and let T be an F-theory. If \cong_T is potentially $\Pi^0_{\alpha+2}$, where $\alpha \geq 1$, then \cong_T is Borel reducible to $=_{\alpha+1}$.

Theorem (M.)

Let F be a fragment in the continuous $\mathcal{L}_{\omega_1\omega}$, and let T be an F-theory with locally compact models. If \cong_T is potentially $\Pi^0_{\alpha+2}$, where $\alpha \geq 1$, then \cong_T is Borel reducible to $=_{\alpha+1}$.
Borel isomorphism relations

Theorem

Let L be a signature, let t be a Polish topology on $\text{Mod}(L)$ consisting of Borel subsets of the standard topology, and let $\alpha < \omega_1$. There exists a fragment F such that $A^{*\bar{a},1/k} \in \Pi_0^0(t_F)$ for every $A \in \Pi_0^0(t)$, $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, and $k > 0$.

Corollary

Let L be a signature, and let T be a theory such that \equiv_T is potentially Π_0^0. There exists a fragment F such that $[M] \in \Pi_0^0(t_F)$ for every $M \in \text{Mod}(T)$.
Borel isomorphism relations

For a fragments F, F', and a formula ϕ,

- $\text{rk}_F(\phi) = 0$ if $\phi \in F$,
- $\text{rk}_F(\phi) = \sup\{\text{rk}_F(\phi_i) + 1\}$ if $\phi = \lor_i \phi_i$ or $\phi = \land_i \phi_i$,
- $\text{rk}_F(\phi) = \text{rk}_F(\psi)$ if ϕ is in the fragment gen. by F and ψ,
- $\text{rk}_F(F') = \sup\{\text{rk}_F(\phi) : \phi \in F'\}$.

Remark: ϕ can be coded as an element of $\mathcal{P}^{\omega}(\mathbb{N})$ if $\text{rk}_F(\phi) \leq \alpha$.
Borel isomorphism relations

For a fragments F, F', and a formula ϕ,

\triangleright \(\text{rk}_F(\phi) = 0 \) if $\phi \in F$,

\triangleright \(\text{rk}_F(\phi) = \sup\{\text{rk}_F(\phi_i) + 1\} \) if $\phi = \bigvee_i \phi_i$ or $\phi = \bigwedge_i \phi_i$,

\triangleright \(\text{rk}_F(\phi) = \text{rk}_F(\psi) \) if ϕ is in the fragment gen. by F and ψ,

\triangleright \(\text{rk}_F(F') = \sup\{\text{rk}_F(\phi) : \phi \in F'\} \).

Remark: ϕ can be coded as an element of $\mathcal{P}^\alpha(\mathbb{N})$ if $\text{rk}_F(\phi) \leq \alpha$.

Theorem

Let F be a fragment, and let T be an F-theory with locally compact models. Suppose that $[M] \in \Pi_{\alpha+2}(t_F)$ for some $M \in \text{Mod}(T)$, $\alpha \geq 1$. There is a fragment $F_M \supseteq F$ such that $[M] \in \Pi^0_2(t_{F_M})$, and $\text{rk}_F(F_M) = \alpha$.
Theorem (Hallbäck, M., Tsankov)

Let F be a fragment and let T be an F-theory. For any $M \in \text{Mod}(T)$, $[M]$ is G_δ in the topology t_F iff M is an atomic model of $\text{Th}_F(M)$.

Lemma (Tsankov)

Let L be a signature. For every fragment F, there exists a fragment $F' \supseteq F$ such that if $M \in \text{Mod}(L)$ is F-atomic, then $\text{Th}_{F'}(M)$ is \aleph_0-categorical.
Thank You!