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Classical results

Let G be a graph with maximum degree A(G).

o (Euler 17xx) If every vertex of G has even degree then G admits a
balanced orientation. |

o (Kénig 1917) If G is bipartite and degree regular then it admits a
perfect matching and thus \'(G) = A(G).
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@ (Shannon 1949) If G is a multigraph then \'(G) < [Eﬂ[G}J.
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Borel graphs

Fix from now on a Polish space (X, 7) with Borel probability measure .
o A graph G with V(G) = X is a Borel graph if E(G) C X? is Borel.

o The Borel edge chromatic number, \;(G), is the smallest n such
that G has a Borel proper n-coloring of its edges

@ The i measurable (Baire measurable) edge chromatic number is
X, (G) (Xm) = min(xz(G|C)), where C ranges over conull
(comeagre) G-invariant Borel sets.

@ G is hyperfinite if there are component finite Borel graphs
Fo C F1 C ... with E(G) = ;- E(Fi)
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Known results

o (Kechris, Solecki, Todorcevic '99) x5(G) < 2A(G) — 1.
@ (CJMST-D '16) This is best possible, even for hyperfinite acyclic
graphs.

o (Csoka, Lippner, Pikhurko '16, Grebik, Pikhurko '20) If G is pmp then
X, (G) < A(G)+1

@ (Thornton '20) If G is pmp and 2d-regular, it admits a Borel
orientation with outdegree in {d —1,d,d + 1} a.e.

@ (Marks, Unger '16) A bipartite G has a Borel perfect matching
generically if |[N(S)| = (1 + €)|S| for every finite S C X and some

e > 0.



New results

o (B., Weilacher '21) If G is bipartite x5,,(G) < A(G) + 1.



New results

o (B., Weilacher '21) If G is bipartite x5,,(G) < A(G) + 1.

o (B."22+) xpy(G) < [*52] +6.
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New results

o (B., Weilacher '21) If G is bipartite x5,,(G) < A(G) + 1.

o (B."22+) xpy(G) < [*52] +6.

e (B. '224) If G is 2d-regular it admits a Borel orientation with
outdegree in {d —1,d,d + 1} generically.

The same holds for X/ (G) if G is p-hyperfinite, and for x5(G) if
asi(G) =1 and G has subexponential growth..
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Better results for one-ended graphs

A connected graph is one-ended if V(G) — F has exactly one infinite
connected component for any finite F C V(G).

A Borel graph is one-ended if each of its connected components is.
i) .
<" S/
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Better results for one-ended graphs

A connected graph is one-ended if V(G) — F has exactly one infinite
connected component for any finite F C V(G).

A Borel graph is one-ended if each of its connected components is.

o (B., Kun, Sabok '21) Any d-regular, bipartite one-ended hyperfinite
graphing admits a Borel perfect matching a.e.

@ Any 2d-regular one-ended hyperfinite graphing admits a Borel balanced
orientation a.e.

e (B., Poulin, Zomback '22+) Any d-regular, bipartite one-ended Borel
graph admits a Borel perfect matching generically.

@ Any 2d-regular one-ended Borel graph admits a Borel balanced
orientation generically.
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approximate matchings

Any d-regular bipartite Borel graph admits a Baire measurable matching
that covers all but an r-discrete set of vertices.
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approximate matchings

Any d-regular bipartite Borel graph admits a Baire measurable matching
that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function o : E(G) — [0, 1] such that
> vee(e) =1forall v € V(G). Given such a o, let F(o) = a—1(0,1).
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approximate matchings

Any d-regular bipartite Borel graph admits a Baire measurable matching
that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function o : E(G) — [0, 1] such that
> vee(e) =1forall v € V(G). Given such a o, let F(o) = a—1(0,1).

We can prove the lemma in three steps:

@ Starting with o = %, round until we find a &' wj

=) )¢

leafless.
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approximate matchings

Any d-regular bipartite Borel graph admits a Baire measurable matching
that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function o : E(G) — [0, 1] such that
> vee(e) =1forall v € V(G). Given such a o, let F(o) = a—1(0,1).

We can prove the lemma in three steps:

@ Starting with o = 1, round until we find a ¢’ with F(o”) acyclic and
leafless.

@ Apply Marks-Unger matching argument to find matching besides on
biinfinite lines.

© Use a toast to find an r-discrete set of points that hits generically
many lines.
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connected toasts

Definition
A borel family of sets T C V(G)=>° is a toast if it satisfies properties (1)

and (2) of the below definition, and it is a connected toast if it also
satisfies property 3:

Q@ Uker E(K) = E(G),
@ for every pair K,L € T either (N(K)UK)NL=0or KUN(K) C L,
or LUN(L) C K,

@ for every K € T the induced subgraph on K\UﬁgLeT L is connected.

o

>4
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connected toasts

A borel family of sets T C V(G)=>° is a toast if it satisfies properties (1)
and (2) of the below definition, and it is a connected toast if it also

satisfies property 3:
) UHET E(K) = E(G),
@ for every pair K,L € T either (N(K)UK)NL=0or KUN(K) C L,
or LUN(L) C K,
@ for every K € T the induced subgraph on K\UﬁgLeT L is connected.

o

e (B., Kun, Sabok '21) Every one-ended, hyperfinite, pmp Borel graph
admits a connected toast 3. i

—

e (B., Poulin, Zomback '22+) Every one-ended bounded degree Borel
graph admits a connected toast generically.

23 /26



One-ended matchings

Any one-ended bipartite d-regular Borel graph admits a Borel perfect
matching generically.
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One-ended matchings

Any one-ended bipartite d-regular Borel graph admits a Borel perfect
matching generically.

Let 7 be a connected toast. For every L € J; there is an m € w, an
L € K € T-,. and a fractional matching ¢’ such that

@ o'(e) € {0,1} for all e € E(L).
@ o'(e) =o(e) for all e & E(K).

O O
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One-ended matchings

Any one-ended bipartite d-regular Borel graph admits a Borel perfect
matching generically.

Let 7 be a connected toast. For every L € J; there is an m € w, an
L € K € T-,. and a fractional matching ¢’ such that

@ o'(e) € {0,1} for all e € E(L).
@ o'(e) =o(e) for all e & E(K).

For every e € L and L C K € T there's a cycle in F(o) that's a subset of
K and contains e.
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