Measurable combinatorics in hyperfinite graphs

Matt Bowen

McGill University

February 8, 2022

Based on joint work with Kun and Sabok, Weilacher, and upcoming work with Poulin and Zomback

Classical results

Let G be a graph with maximum degree $\Delta(G)$.

 (Euler 17xx) If every vertex of G has even degree then G admits a balanced orientation.

• (Kőnig 1917) If G is bipartite and degree regular then it admits a perfect matching and thus $\chi'(G) = \Delta(G)$.

• (Shannon 1949) If G is a **multigraph** then $\chi'(G) \leq \lfloor \frac{3\Delta(G)}{2} \rfloor$.

Borel graphs

Fix from now on a Polish space (X, τ) with Borel probability measure μ .

- A graph G with V(G) = X is a **Borel graph** if $E(G) \subset X^2$ is Borel.
- The Borel edge chromatic number, $\chi'_B(G)$, is the smallest n such that G has a Borel proper n-coloring of its edges
- The μ measurable (Baire measurable) edge chromatic number is $\chi'_{\mu}(G)$ (χ'_{BM}) = min($\chi'_{B}(G|C)$), where C ranges over conull (comeagre) G-invariant Borel sets.
- G is **hyperfinite** if there are component finite Borel graphs $F_0 \subset F_1 \subset ...$ with $E(G) = \bigcup_{i \in \omega} E(F_i)$

• (Kechris, Solecki, Todorcevic '99) $\chi_B'(G) \leq 2\Delta(G) - 1$.

- (Kechris, Solecki, Todorcevic '99) $\chi'_B(G) \leq 2\Delta(G) 1$.
 - (CJMST-D '16) This is best possible, even for hyperfinite acyclic graphs.

- (Kechris, Solecki, Todorcevic '99) $\chi'_B(G) \leq 2\Delta(G) 1$.
 - (CJMST-D '16) This is best possible, even for hyperfinite acyclic graphs.
- (Csoka, Lippner, Pikhurko '16, Grebik, Pikhurko '20) If G is pmp then $\chi'_{\mu}(G) \leq \Delta(G) + 1$

- (Kechris, Solecki, Todorcevic '99) $\chi'_B(G) \leq 2\Delta(G) 1$.
 - (CJMST-D '16) This is best possible, even for hyperfinite acyclic graphs.
- (Csoka, Lippner, Pikhurko '16, Grebik, Pikhurko '20) If G is pmp then $\chi'_{\mu}(G) \leq \Delta(G) + 1$
- (Thornton '20) If G is pmp and 2d-regular, it admits a Borel orientation with outdegree in $\{d-1,d,d+1\}$ a.e.

- (Kechris, Solecki, Todorcevic '99) $\chi'_B(G) \leq 2\Delta(G) 1$.
 - (CJMST-D '16) This is best possible, even for hyperfinite acyclic graphs.
- (Csoka, Lippner, Pikhurko '16, Grebik, Pikhurko '20) If G is pmp then $\chi'_{\mu}(G) \leq \Delta(G) + 1$
- (Thornton '20) If G is pmp and 2d-regular, it admits a Borel orientation with outdegree in $\{d-1,d,d+1\}$ a.e.
- (Marks, Unger '16) A bipartite G has a Borel perfect matching generically if |N(S)| ≥ (1+ε)|S| for every finite S ⊂ X and some ε > 0.

New results

• (B., Weilacher '21) If G is bipartite $\chi'_{BM}(G) \leq \Delta(G) + 1$.

New results

- (B., Weilacher '21) If G is bipartite $\chi'_{BM}(G) \leq \Delta(G) + 1$.
- (B. '22+) $\chi'_{BM}(G) \leq \lceil \frac{3\Delta(G)}{2} \rceil + 6$.
- (B. '22+) If G is 2d-regular it admits a Borel orientation with outdegree in $\{d-1,d,d+1\}$ generically.

New results

- (B., Weilacher '21) If G is bipartite $\chi'_{BM}(G) \leq \Delta(G) + 1$.
- (B. '22+) $\chi'_{BM}(G) \leq \lceil \frac{3\Delta(G)}{2} \rceil + 6$.
- (B. '22+) If G is 2d-regular it admits a Borel orientation with outdegree in $\{d-1,d,d+1\}$ generically.

The same holds for $\chi'_{\mu}(G)$ if G is μ -hyperfinite, and for $\chi'_{B}(G)$ if asi(G) = 1 and G has subexponential growth..

A connected graph is **one-ended** if V(G) - F has exactly one infinite connected component for any finite $F \subset V(G)$.

A Borel graph is one-ended if each of its connected components is.

A connected graph is **one-ended** if V(G) - F has exactly one infinite connected component for any finite $F \subset V(G)$.

A Borel graph is one-ended if each of its connected components is.

 (B., Kun, Sabok '21) Any d-regular, bipartite one-ended hyperfinite graphing admits a Borel perfect matching a.e.

A connected graph is **one-ended** if V(G) - F has exactly one infinite connected component for any finite $F \subset V(G)$.

A Borel graph is one-ended if each of its connected components is.

- (B., Kun, Sabok '21) Any d-regular, bipartite one-ended hyperfinite graphing admits a Borel perfect matching a.e.
 - Any 2d-regular one-ended hyperfinite graphing admits a Borel balanced orientation a.e.

A connected graph is **one-ended** if V(G) - F has exactly one infinite connected component for any finite $F \subset V(G)$.

A Borel graph is one-ended if each of its connected components is.

- (B., Kun, Sabok '21) Any d-regular, bipartite one-ended hyperfinite graphing admits a Borel perfect matching a.e.
 - Any 2d-regular one-ended hyperfinite graphing admits a Borel balanced orientation a.e.
- (B., Poulin, Zomback '22+) Any d-regular, bipartite one-ended Borel graph admits a Borel perfect matching generically.
 - Any 2d-regular one-ended Borel graph admits a Borel balanced orientation generically.

Lemma

Any d-regular bipartite Borel graph admits a Baire measurable matching that covers all but an r-discrete set of vertices.

Lemma

Any d-regular bipartite Borel graph admits a Baire measurable matching that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function $\sigma: E(G) \to [0,1]$ such that $\sum_{v \in e} \sigma(e) = 1$ for all $v \in V(G)$. Given such a σ , let $F(\sigma) = \sigma^{-1}(0,1)$.

Lemma

Any d-regular bipartite Borel graph admits a Baire measurable matching that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function $\sigma: E(G) \to [0,1]$ such that $\sum_{v \in e} \sigma(e) = 1$ for all $v \in V(G)$. Given such a σ , let $F(\sigma) = \sigma^{-1}(0,1)$.

We can prove the lemma in three steps:

Lemma

Any d-regular bipartite Borel graph admits a Baire measurable matching that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function $\sigma: E(G) \to [0,1]$ such that $\sum_{v \in e} \sigma(e) = 1$ for all $v \in V(G)$. Given such a σ , let $F(\sigma) = \sigma^{-1}(0,1)$.

We can prove the lemma in three steps:

- Starting with $\sigma = \frac{1}{d}$, round until we find a σ' with $F(\sigma')$ acyclic and leafless.
- Apply Marks-Unger matching argument to find matching besides on biinfinite lines.

Lemma

Any d-regular bipartite Borel graph admits a Baire measurable matching that covers all but an r-discrete set of vertices.

A fractional perfect matching is a function $\sigma: E(G) \to [0,1]$ such that $\sum_{v \in e} \sigma(e) = 1$ for all $v \in V(G)$. Given such a σ , let $F(\sigma) = \sigma^{-1}(0,1)$.

We can prove the lemma in three steps:

- ① Starting with $\sigma = \frac{1}{d}$, round until we find a σ' with $F(\sigma')$ acyclic and leafless.
- Apply Marks-Unger matching argument to find matching besides on biinfinite lines.
- Use a toast to find an r-discrete set of points that hits generically many lines.

connected toasts

Definition

A borel family of sets $\mathcal{T} \subset V(G)^{<\infty}$ is a **toast** if it satisfies properties (1) and (2) of the below definition, and it is a **connected toast** if it also satisfies property 3:

- or L \cup N(L) \subseteq K, $L \in \mathcal{T}$ either $(N(K) \cup K) \cap L = \emptyset$ or $K \cup N(K) \subseteq L$,
- **③** for every $K \in \mathcal{T}$ the induced subgraph on $K \setminus \bigcup_{K \supseteq L \in \mathcal{T}} L$ is connected.

connected toasts

Definition

A borel family of sets $\mathcal{T} \subset V(G)^{<\infty}$ is a **toast** if it satisfies properties (1) and (2) of the below definition, and it is a **connected toast** if it also satisfies property 3:

- or $L \cup N(L) \subseteq K$, $L \in \mathcal{T}$ either $(N(K) \cup K) \cap L = \emptyset$ or $K \cup N(K) \subseteq L$, or $L \cup N(L) \subseteq K$,
- **③** for every $K \in \mathcal{T}$ the induced subgraph on $K \setminus \bigcup_{K \supseteq L \in \mathcal{T}} L$ is connected.
 - (B., Kun, Sabok '21) Every one-ended, hyperfinite, pmp Borel graph admits a connected toast a.e.
 - (B., Poulin, Zomback '22+) Every one-ended bounded degree Borel graph admits a connected toast generically.

Theorem

Any one-ended bipartite d-regular Borel graph admits a Borel perfect matching generically.

Theorem

Any one-ended bipartite d-regular Borel graph admits a Borel perfect matching generically.

Theorem

Any one-ended bipartite d-regular Borel graph admits a Borel perfect matching generically.

Let \mathcal{T} be a connected toast. For every $L \in \mathcal{T}_1$ there is an $m \in \omega$, an $L \subset K \in \mathcal{T}_{\leq m}$, and a fractional matching σ' such that

- **1** $\sigma'(e) \in \{0,1\}$ for all $e \in E(L)$.
- $\circ \sigma'(e) = \sigma(e)$ for all $e \notin E(K)$.

Theorem

Any one-ended bipartite d-regular Borel graph admits a Borel perfect matching generically.

Let \mathcal{T} be a connected toast. For every $L \in \mathcal{T}_1$ there is an $m \in \omega$, an $L \subset K \in \mathcal{T}_{\leq m}$, and a fractional matching σ' such that

- **1** $\sigma'(e) \in \{0,1\}$ for all $e \in E(L)$.
- $\circ \sigma'(e) = \sigma(e)$ for all $e \notin E(K)$.

For every $e \in L$ and $L \subset K \in T$ there's a cycle in $F(\sigma)$ that's a subset of K and contains e.

