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Main theorem

Theorem (M. – Törnquist)
For every infinite Σ1

1 almost disjoint family A there is a ∆1
1 witness to non-maximality, i.e.,

there is some x ∈ ∆1
1([N]∞) so that x ∩ z is finite for all z ∈ A.



Preliminaries

We identify the power set P(N) with the set 2N of characteristic functions and denote the
set of infinite subsets of N as [N]∞.

For a set X , we denote by X<∞ the set of finite sequences of elements of X . A tree on X
is a subset T ⊆ X<∞, which is closed under initial segments. For a tree T , we denote by
[T ] the set of infinite branches through T , which are such x ∈ XN, so that x � n ∈ T for
every n ∈ N. We will be most interested in trees on 2× N.

A subset A ⊆ [N]∞ is (boldface) analytic, if there is a tree T ⊆ (2× N)<∞ so that
A = p[T ], where p : 2N × NN → 2N is the projection on the first component.



Almost disjoint families

For x , y ∈ [N]∞ we say that x and y are almost disjoint, if x ∩ y is finite. A family
A ⊆ [N]∞ is almost disjoint (a.d.) if any two x 6= y ∈ A are almost disjoint. Such a family
is maximal almost disjoint (mad) if there is no a.d. B ) A.

We focus on infinite mad families, since any finite partition of N into infinite sets is mad.
Note that using a diagonalisation argument there is no countably infinite mad family.
Invoking AC in the form of Zorn’s lemma it is easy to show that there are infinite mad
families.

Question
Are there definable infinite mad families? Are there analytic infinite mad families?



Definable mad families

Question
Are there definable infinite mad families? Are there infinite analytic mad families?

Theorem (Mathias)
There is no infinite analytic mad family.

This was first proven by Mathias in the 70s using forcing. Almost four decades later
Törnquist found a proof using a derivative argument on a tree.

It was shown by A. W. Miller that if V = L then there is an infinite Π1
1 mad family.



A shorter proof of Mathias’ theorem

We found a shorter version of Asger’s proof. The main idea is the same; the new thing is
that we don’t resort to using diagonal sequences. But this means that we have to be more
careful when removing parts of the tree.

For x , y ∈ [N]∞ write x ⊆∗ y for |y \ x | < ∞. If s ∈ (2× N)<∞, then let s∗ ∈ 2<∞ be the
first component of s, i.e., if s = (s0, s1), then s∗ = s0.

For a tree T on 2× N and s ∈ T let T[s] := {t ∈ T : s ≤ t ∨ t ≤ s} be the tree of nodes
comparable to s.



Diagonalising lemma

Lemma (Diagonalising lemma)
Suppose that A is a family of subsets of N and B = (Bn)n∈N is a countable sequence of
subsets of N so that:
(1) (∀z ∈ A) (∃m ∈ N) z ⊆∗ ∪n<mBn;
(2) (∀m ∈ N) |N \ ∪n<mBn| = ∞.
Then there is some x ∈ [N]∞ so that |x ∩ z| < ∞ for all z ∈ A.

Proof.
Inductively define x ∈ [N]∞ by picking xn ∈ N \ ∪k<nBk , larger than all previous
x0, . . . , xn−1. It is always possible to pick such xn by condition (2). Setting
x = {xn : n ∈ N}, condition (1) implies that |x ∩ z| < ∞ for all z ∈ A.



Branching lemma
Now fix a countable collection B of infinite subsets of N. Then define

TB := {t ∈ T : (∃w ∈ [T[t]]) (∀n ∈ N) (∀B0, . . . ,Bn−1 ∈ B) p(w) 6⊆∗ ∪k∈nBk}.

Lemma (Branching lemma)
Suppose T is a tree on 2×N such that p[T ] is almost disjoint and B a countable family of
infinite subsets of N. Suppose s, t ∈ TB are incompatible in the first component. Then
there are s ′ ∈ TB, s ≤ s ′ and t ′ ∈ TB, t ≤ t ′ so that for all s ′′ ∈ TB, s ′ ≤ s ′′ and all
t ′′ ∈ TB, t ′ ≤ t ′′ we have s ′′∗ ∩ t ′′∗ = s ′∗ ∩ t ′∗.
Proof. Suppose for contradiction that the lemma fails for s, t ∈ TB. Set s0 := s and
t0 := t. Then we inductively use the negation of the statement of the lemma on sn, tn to
get sn+1 ≥ sn and tn+1 ≥ tn with (sn)∗ ∩ (tn)∗ ( (sn+1)∗ ∩ (tn+1)∗. Setting x := ∪nsn and
y := ∪ntn, we get that x , y ∈ [T ], but p(x) ∩ p(y) is infinite, which is a contradiction.



There are no infinite analytic mad families

Note that for s, t ∈ TB, we can express the fact that there are no s ′, t ′ ∈ TB with s ≤ s ′,
t ≤ t ′ and s∗ ∩ t∗ ( s ′∗ ∩ t ′∗ as (∪p(TB

[s])) ∩ (∪p(TB
[t])) = s∗ ∩ t∗.

We denote by Fin the ideal of finite subsets of N and for A ⊆ [N]∞ we write IA for the
ideal generated by A and Fin.

Proof of Mathias’ theorem.
Let T be a tree on 2× N so that A := p[T ] is an infinite almost disjoint family. We will
recursively define a countable family B of infinite subsets of N, which will satisfy conditions
of the Diagonalising lemma. Set B0 := ∅. Suppose we have defined Bα for α ≤ γ so that
(1) if α ≤ β ≤ γ then Bα ⊆ Bβ and both are countable;
(2) for all α ≤ γ, for all n ∈ N and all B0, . . . ,Bn−1 ∈ Bα we have that N \ ∪k<nBk /∈ IA.



We will now define Bγ+1. If there are s, t ∈ TBγ so that s∗, t∗ are incompatible and so that
(∪p(TBγ

[s] )) ∩ (∪p(TBγ

[t] )) = s∗ ∩ t∗, then consider the following cases:

(1) if (∀n ∈ N) (∀B0, . . . ,Bn−1 ∈ Bγ) (∪p(TBγ

[s] )) \ ∪k<nBk /∈ IA, then put
Bγ+1 := Bγ ∪ {∪p(TBγ

[t] )};

(2) else if (∀n ∈ N) (∀B0, . . . ,Bn−1 ∈ Bγ) (∪p(TBγ

[t] )) \ ∪k<nBk /∈ IA, then put
Bγ+1 := Bγ ∪ {∪p(TBγ

[s] )};

(3) else put Bγ+1 := Bγ ∪ {∪p(TBγ

[s] ),∪p(TBγ

[t] )}.
It is clear that in all three cases Bγ+1 still satisfies that for all n ∈ N and any
B0, . . . ,Bn−1 ∈ Bγ+1 we have that N \ ∪k<nBk /∈ IA, since the intersection of the two
potential new sets (the cones above s ′ and t ′) is finite and since the condition held for Bγ .

If there are no such s, t stop the process and set α∗ := γ and B∗ := Bγ .



Suppose we have defined Bα for all α < λ, where λ is countable limit, so that the above
conditions (1) and (2) hold. Then let Bλ := ∪α<λBα. Clearly the conditions are preserved.

The process clearly stops at a countable α∗, since at each step we use some pair s, t which
hasn’t been used up to that point. Since there are only countably many pairs, the process
cannot last for uncountably many steps.

Claim
Any two s, t ∈ TB∗ are compatible in the first component.

Proof.
Suppose for contradiction that the process stopped, but that there are s, t ∈ TB∗ which are
incompatible in the first component. Applying the Branch lemma, we get some s ′ ∈ TB∗

[s]
and t ′ ∈ TB∗

[t] which satisfy that (∪p(TB∗

[s′])) ∩ (∪p(TB∗

[t′])) = s ′∗ ∩ t ′∗. This is clearly a
contradiction.



Now, consider two further cases:
(1) if ∪p(TB∗

) /∈ IA, then it must hold that p[TB∗
] = ∅. In this case let B := B∗.

(2) if ∪p(TB∗
) ∈ IA, then let B := B∗ ∪ {∪p(TB∗

)}.
Note that B satisfies that for all n ∈ N and all B0, . . . ,Bn−1 ∈ B we have that
N \ ∪k<nBk /∈ IA.

Claim
For all z ∈ A there are n ∈ N and B0, . . . ,Bn−1 ∈ B so that z ⊆∗ ∪k<nBk .

Proof.
In case z ∈ p[TB∗

], we have that z ∈ B. So suppose that z /∈ p[TB∗
]. Then there is some

α < α∗ so that z ∈ p[TBα ] \ p[TBα+1 ]. But this means that there are n ∈ N and
B0, . . . ,Bn−1 ∈ Bα so that z ⊆∗ ∪k<nBk .



Finally, observe that B is countable; if it is infinite, we can end the proof by application of
the Diagonalising lemma. If it is finite, just take x := N \ ∪B. Then it is clear that for all
z ∈ A we have that x ∩ z is finite.



Preliminaries on effectiveness

An element x ∈ 2N (or in 2(2×N)<∞ , etc.) is recursive, denoted by ∆0
1, if there is a Turing

machine deciding the membership of x . A subset A ⊆ 2N is Σ1
1 (lightface analytic) if there

is a recursive tree T ⊆ (2× N)<∞ so that A = p[T ]. For a ∈ NN, we analogously define
∆0

1[a] and Σ1
1[a]. Then note that analytic sets are exactly Σ1

1[a] sets for a ranging over NN.

One defines similarly what it means for x ∈ 2N to be Σ1
1. If both x and N \ x are Σ1

1, we
say that x is ∆1

1 (hyperarithmetic). By ∆1
1(2

N) we denote the set of all x ∈ 2N which are
∆1

1. This set is Π1
1, i.e., 2N \∆1

1(2
N) is Σ1

1.



Kripke-Platek set theory

Kripke-Platek set theory (KP) is a fragment of ZF, where we omit the power set axiom and
restrict separation and collection axioms to ∆0 formulas. Then one proves that the KP
axioms imply ∆1-separation, Σ1-collection, (strong) Σ1-replacement and Σ1-recursion.

Let ωCK
1 denote the least non-recursive ordinal. Then LωCK

1
, the initial segment of Gödel’s

constructible universe L, is the smallest ω-model of KP. Moreover, it holds that ∆1
1

elements of 2N are precisely LωCK
1

∩ 2N.

So if we work in LωCK
1

and produce x ∈ 2N, then x is automatically ∆1
1!



Useful theorems about effectiveness

Theorem (Effective perfect set theorem)
If A ⊆ 2N is Σ1

1 and contains x not in ∆1
1, then A contains a perfect subset.

Theorem (Spector – Gandy)
The quantifier ∃x ∈ ∆1

1(2
N) may be considered universal.



Effective theorem

Theorem (M. – Törnquist, 2020)
For every infinite Σ1

1 almost disjoint family A there is a ∆1
1 witness to non-maximality, i.e.,

there is some x ∈ ∆1
1([N]∞) so that x ∩ z is finite for all z ∈ A.

We adapt some definitions to LωCK
1

, so that we don’t use infinite branches. Let T be a tree
on 2×N so that p[T ] is almost disjoint, let B be a countable family of subsets of N and let
s ∈ T . Then set

xT
s := ∪{t∗ : t ∈ T[s]}

and
TB := {s ∈ T : (∀n ∈ ω) (∀B0, . . . ,Bn−1 ∈ B) xT

s \ ∪k<nBk /∈ Fin}.



Sketch of Proof.
Assume for contradiction that there were a recursive tree T on 2× N such that A := p[T ]
is an infinite almost disjoint family, so that for every x ∈ ∆1

1([N]∞) there is some z ∈ A
with x ∩ z infinite. Then we have that for any x ∈ ∆1

1([N]∞), the question “x ∈ A” is ∆1
1.

Claim
There is a Π1

1 predicate ϕ such that if x ∈ ∆1
1([N]∞) then x ∈ IA iff ϕ(x). In particular,

for x ∈ ∆1
1([N]∞), it is ∆1

1 to say “x ∈ IA”.
Proof.
Let x ∈ ∆1

1([N]∞), and assume that x ∈ IA. Then

{z ∈ A : |x ∩ z| = ∞}

is a finite Σ1
1 set, so by the Effective perfect set theorem it consists of finitely many ∆1

1

reals.



It follows that for x ∈ ∆1
1([N]∞),

x ∈ IA ⇐⇒ (∃~z ∈ ∆1
1(([N]∞)<∞)) (∀i < lh(~z)) ~zi ∈ A ∧ x ⊆∗

⋃
i<lh(~z)

~zi ,

and the right hand side is a Π1
1 predicate by the Spector – Gandy theorem and the

observation that “~zi ∈ A” is ∆1
1 since ~zi ∈ ∆1

1([N]∞).

We work in LωCK
1

, and by the above, we can use the question “x ∈ IA” as a part of our
derivative process. But why does the process stop before ωCK

1 ?

At successor steps, instead of taking arbitrary s, t so that s∗, t∗ are incompatible, we have
to be more careful. There will be certain steps, when we will enumerate all such s, t. Then
we will use the least pair, not yet used and still not covered. When we run out of such pairs,
we make a new enumeration. Let βα denote the step, when we enumerate the pairs for the
αth time.



Define the relation ≺ on T × T by

(s, t) ≺ (s ′, t ′) ⇐⇒ s ′ ≤ s ∧ t ′ ≤ t ∧ s ′∗ ∩ t ′∗ ( s∗ ∩ t∗.

Since p[T ] is almost disjoint in V , we get that ≺ is well founded in V . Hence LωCK
1

also
thinks that ≺ is well-founded and correctly calculates its rank. Let Γ := rk(≺) < ωCK

1 .

Claim
Suppose that (s, t) was listed at step βγ . Then rk(≺�{(s ′, t ′) : (s ′, t ′) ≺ (s, t)}) ≥ γ.

Proof.
By induction on γ.

Suppose for contradiction that the process doesn’t stop before ωCK
1 . Then βΓ+1 is defined

and less than ωCK
1 . Let (s, t) be some pair listed at step βΓ+1. Then

rk(≺�{(s ′, t ′) : (s ′, t ′) ≺ (s, t)}) ≥ Γ + 1, which is a contradiction with rk(≺) = Γ.
Moreover, this tells us that the process stops before ω · (Γ + 1) < ωCK

1 .

The rest of the proof is the same.



4 for the price of 1

The same argument can be used with minor changes to give new proofs of the following:

Theorem (Törnquist)
Let a ∈ NN and suppose that ℵL[a]

1 < ℵ1. Then there are no infinite Σ1
2[a] mad families.

Note that Σ1
2[a] subsets of 2N are of the form p[T ], where T ∈ L is a tree on 2× ω1.

Theorem (Törnquist)
If MA(κ) holds for some κ < 2ℵ0 then there are no infinite κ-Suslin mad families.

Recall that A ⊆ 2N is κ-Suslin if it is of the form p[T ], for T a tree on 2× κ.



Ongoing work

We conclude with some open problems, which we are work in progress.

Theorem (Haga – Schrittesser – Törnquist)
For any α < ω1, there are no infinite analytic Finα-mad families.

Question
Is there a derivative argument for “there are no analytic Finα mad families”? If yes, does
the derivative argument effectivise?

Question
Does it hold that there is a ∆1

1 witness to non-maximality for each infinite Σ1
1 Finα-mad

family, for all α < ωCK
1 ?



Something to take home

(1) Simplified proof of ”there are no infinite analytic mad families” using a derivative
argument on a tree.

(2) The derivative argument is effective enough so that it can be carried out in LωCK
1

.

(3) Moreover, the process stops before ωCK
1 , thanks to well-foundedness.

(4) So we have an effective strengthening of Mathias’ theorem.
(5) The same argument works with minor changes to give new proofs of facts about Σ1

2

mad families and κ-Suslin mad families.



THANK YOU!
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