Set theory and a proposed model of the mind in psychology

Caltech logic seminar, 19 January 2022
Asger Törnquist (U. of Copenhagen)
Joint work with Jens Mammen (U. of Aalborg)
The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is *not* addressed.
Jens Mammen’s theory

The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
Jens Mammen’s theory

The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
Jens Mammen’s theory

The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
Jens Mammen’s theory

The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

1. A set U of objects in the world (the “universe”).
2. A topology S on U.
3. A collection C of subsets of U.
4. S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
Jens Mammen’s theory

The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
Jens Mammen’s theory

The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
The Danish psychologist Jens Mammen has proposed a general theory for what may be called the “interface” between the inner world of a human mind (such as your own), and the outer world which this human lives in, perceives, and interacts with, and reflects upon.

From a mathematical point of view, Mammen’s theory is unusual and interesting because it is formulated mathematically: Mammen formulates his theory axiomatically, describing it in terms of:

- A set U of objects in the world (the “universe”).
- A topology S on U.
- A collection C of subsets of U.
- S and C must satisfy certain axioms (to be stated in a moment).

Remark: Mammen’s theory is “extensional” or “extrinsic”. How the brain internally realizes the model is not addressed.
Mammen’s theory: Why?

Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.
 - For instance, a mind that has “experienced”, or sensed, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.
- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?
- In psychology, this gap is particularly problematic, since attachments to individual people is at the core of human psychology:
 - My father may belong to the broad category of fathers, but my father’s importance to me is not primarily derived from that he belongs to the general category of people who are fathers.
Mammen’s theory: Why?

Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.
 - For instance, a mind that has “experienced”, or sensed, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.

- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?

- In psychology, this gap is particularly problematic, since attachments to individual people is at the core of human psychology:
 - My father may belong to the broad category of fathers, but my father’s importance to me is not primarily derived from that he belongs to the general category of people who are fathers.
Mammen’s theory: Why?

Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.

 For instance, a mind that has “experienced”, or sensed, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.

- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?

- In psychology, this gap is particularly problematic, since attachments to individual people is at the core of human psychology:

 My father may belong to the broad category of fathers, but my father’s importance to me is not primarily derived from that he belongs to the general category of people who are fathers.
Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.
 - For instance, a mind that has “experienced”, or sensed, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.

- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?

- In psychology, this gap is particularly problematic, since attachments to individual people is at the core of human psychology:
 - My father may belong to the broad category of fathers, but my father’s importance to me is not primarily derived from that he belongs to the general category of people who are fathers.
Mammen’s theory: Why?

Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.

 For instance, a mind that has “experienced”, or **sensed**, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.

- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?

- In psychology, this gap is particularly problematic, since attachments to **individual people** is at the core of human psychology:

 - *My* father may belong to the broad category of fathers, but *my* father’s importance to *me* is not primarily derived from that he belongs to the general category of people who are fathers.
Mammen’s theory: Why?

Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.
 - For instance, a mind that has “experienced”, or sensed, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.

- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?

- In psychology, this gap is particularly problematic, since attachments to individual people is at the core of human psychology:
 - My father may belong to the broad category of fathers, but my father’s importance to me is not primarily derived from that he belongs to the general category of people who are fathers.
Mammen’s theory: Why?

Some features and motivations (roughly):

- Historically, theoretical psychologists and philosophers have proposed models for the mind-world interface using broad “categories” that the mind supposedly organizes data about the world into.
 - For instance, a mind that has “experienced”, or **sensed**, one or more stones is thought to have formed a broad category of “stones”, and can then recognize when an object is a stone.

- What these models are missing is our relationship to individual objects/people/animals/etc: Why, if I drop a particular stone from my hand, can I identify that it is the same stone that is now on the floor as the one I had in my hand earlier?

- In psychology, this gap is particularly problematic, since attachments to **individual people** is at the core of human psychology:
 - *My* father may belong to the broad category of fathers, but *my* father’s importance to *me* is not primarily derived from that he belongs to the general category of people who are fathers.
You may find it natural to ask:

Could the problem of individual identification not be solved as follows: An object (or a person) is identified because it (or he or she) is uniquely determined by its membership in a number of categories?

Perhaps, but this still does not seem to reflect accurately psychologists’ observations “in the field” (e.g., the clinical setting) of how the human mind works, especially when it comes to people.

From the working psychologist’s point of view, it seems that our mind doesn’t just form broad “sense” categories, but also places individual people and objects in special _choice_, or “distinguished” categories, especially when it comes to psychological attachments.
Mammen’s theory: Remark

You may find it natural to ask:

Could the problem of individual identification not be solved as follows: An object (or a person) is identified because it (or he or she) is uniquely determined by its membership in a number of categories?

Perhaps, but this still does not seem to reflect accurately psychologists’ observations “in the field” (e.g., the clinical setting) of how the human mind works, especially when it comes to people.

From the working psychologist’s point of view, it seems that our mind doesn’t just form broad “sense” categories, but also places individual people and objects in special *choice*, or “distinguished” categories, especially when it comes to psychological attachments.
You may find it natural to ask:

Could the problem of individual identification not be solved as follows: An object (or a person) is identified because it (or he or she) is uniquely determined by its membership in a number of categories?

Perhaps, but this still does not seem to reflect accurately psychologists’ observations “in the field” (e.g., the clinical setting) of how the human mind works, especially when it comes to people.

From the working psychologist’s point of view, it seems that our mind doesn’t just form broad “sense” categories, but also places individual people and objects in special choice, or “distinguished” categories, especially when it comes to psychological attachments.
You may find it natural to ask:

Could the problem of individual identification not be solved as follows: An object (or a person) is identified because it (or he or she) is uniquely determined by its membership in a number of categories?

Perhaps, but this still does not seem to reflect accurately psychologists’ observations “in the field” (e.g., the clinical setting) of how the human mind works, especially when it comes to people.

From the working psychologist’s point of view, it seems that our mind doesn’t just form broad “sense” categories, but also places individual people and objects in special _choice_, or “distinguished” categories, especially when it comes to psychological attachments.
Mammen’s theory: Remark

You may find it natural to ask:

Could the problem of individual identification not be solved as follows: An object (or a person) is identified because it (or he or she) is uniquely determined by its membership in a number of categories?

Perhaps, but this still does not seem to reflect accurately psychologists’ observations “in the field” (e.g., the clinical setting) of how the human mind works, especially when it comes to people.

From the working psychologist’s point of view, it seems that our mind doesn’t just form broad “sense” categories, but also places individual people and objects in special **choice**, or “distinguished” categories, especially when it comes to psychological attachments.
Mathematical formulation

Definition

A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
A "Mammen model" is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.
(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
Mathematical formulation

Definition

A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
Definition

A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
Definition

A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.

Further, S and C must satisfy:

- $C \cap S = \{\emptyset\}$.
- If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
Mathematical formulation

Definition

A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.
(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
Mathematical formulation

Definition

A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology \mathcal{S}, which is **perfect**, meaning that no non-empty open set is finite.
- A family \mathcal{C} of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in \mathcal{C}$.
 - Every non-empty $C \in \mathcal{C}$ contains a singleton which is in \mathcal{C}.
 - \mathcal{C} is closed under finite unions and finite intersections.
- Further, \mathcal{S} and \mathcal{C} must satisfy:
 - $\mathcal{C} \cap \mathcal{S} = \{\emptyset\}$.
 - If $C \in \mathcal{C}$ and $S \in \mathcal{S}$ then $C \cap S \in \mathcal{C}$.

Remark: (1) The elements of \mathcal{S} are called **sense categories** and the elements of \mathcal{C} are called **choice categories**.

(2) If \mathcal{C}' is the ideal generated by \mathcal{C}, then $(U, \mathcal{S}, \mathcal{C}')$ is again a Mammen model, provided $(U, \mathcal{S}, \mathcal{C})$ is.
A “Mammen model” is a non-empty set U equipped with:

- A Hausdorff topology S, which is **perfect**, meaning that no non-empty open set is finite.
- A family C of subsets of U satisfying the following requirements:
 - There is a non-empty $C \in C$.
 - Every non-empty $C \in C$ contains a singleton which is in C.
 - C is closed under finite unions and finite intersections.
- Further, S and C must satisfy:
 - $C \cap S = \{\emptyset\}$.
 - If $C \in C$ and $S \in S$ then $C \cap S \in C$.

Remark: (1) The elements of S are called **sense categories** and the elements of C are called **choice categories**.

(2) If C' is the ideal generated by C, then (U, S, C') is again a Mammen model, provided (U, S, C) is.
Definition

A “Mammen model” is a non-empty set \(U \) equipped with:

- A Hausdorff topology \(S \), which is perfect, meaning that no non-empty open set is finite.

- A family \(C \) of subsets of \(U \) satisfying the following requirements:
 - There is a non-empty \(C \in C \).
 - Every non-empty \(C \in C \) contains a singleton which is in \(C \).
 - \(C \) is closed under finite unions and finite intersections.

- Further, \(S \) and \(C \) must satisfy:
 - \(C \cap S = \{\emptyset\} \).
 - If \(C \in C \) and \(S \in S \) then \(C \cap S \in C \).

Remark: (1) The elements of \(S \) are called sense categories and the elements of \(C \) are called choice categories.

(2) If \(C' \) is the ideal generated by \(C \), then \((U, S, C')\) is again a Mammen model, provided \((U, S, C)\) is.
Complete Mammen models

Given a Mammen structure \((U, S, C)\), it is natural to wonder if we may need more “categories” (i.e., collections of subsets of \(U\)) to describe every possible category in the universe (i.e., subset of \(U\)).

The notion of a complete Mammen structure seeks to add the requirement that every “category” is finitely described\(^1\) given \(S\) and \(C\):

Definition

A Mammen model \((U, S, C)\) is called complete if every \(X \subseteq U\) can be written as

\[
X = S \cup C
\]

for some \(S \in S\) and \(C \in C\).

Remark: In a complete Mammen model, \(C\) is automatically an ideal.

\(^1\)In Mammen’s terminology, “finitely described” is called “decidable”.
Given a Mammen structure \((U, S, C)\), it is natural to wonder if we may need more “categories” (i.e., collections of subsets of \(U\)) to describe every possible category in the universe (i.e., subset of \(U\)).

The notion of a complete Mammen structure seeks to add the requirement that every “category” is finitely described\(^1\) given \(S\) and \(C\):

Definition

A Mammen model \((U, S, C)\) is called complete if every \(X \subseteq U\) can be written as

\[
X = S \cup C
\]

for some \(S \in S\) and \(C \in C\).

Remark: In a complete Mammen model, \(C\) is automatically an ideal.

\(^1\)In Mammen’s terminology, “finitely described” is called “decidable”.

Caltech logic seminar, 19 January 2022 Asger Set theory and a proposed model of the mind 6 / 29
Complete Mammen models

Given a Mammen structure \((U, S, C)\), it is natural to wonder if we may need more “categories” (i.e., collections of subsets of \(U\)) to describe every possible category in the universe (i.e., subset of \(U\)).

The notion of a complete Mammen structure seeks to add the requirement that every “category” is finitely described\(^1\) given \(S\) and \(C\):

Definition

A Mammen model \((U, S, C)\) is called complete if every \(X \subseteq U\) can be written as

\[
X = S \cup C
\]

for some \(S \in S\) and \(C \in C\).

Remark: In a complete Mammen model, \(C\) is automatically an ideal.

\(^1\)In Mammen’s terminology, “finitely described” is called “decidable”.

Caltech logic seminar, 19 January 2022 Asger Set theory and a proposed model of the mind
Complete Mammen models

Given a Mammen structure \((U, S, C)\), it is natural to wonder if we may need more “categories” (i.e., collections of subsets of \(U\)) to describe every possible category in the universe (i.e., subset of \(U\)).

The notion of a **complete** Mammen structure seeks to add the requirement that every “category” is **finitely described**\(^1\) given \(S\) and \(C\):

Definition

A Mammen model \((U, S, C)\) is called **complete** if every \(X \subseteq U\) can be written as

\[
X = S \cup C
\]

for some \(S \in S\) and \(C \in C\).

Remark: In a complete Mammen model, \(C\) is automatically an ideal.

\(^1\)In Mammen’s terminology, “finitely described” is called “decidable”.

Caltech logic seminar, 19 January 2022 Asger Set theory and a proposed model of the mind 6 / 29
Complete Mammen models

Given a Mammen structure (U, S, C), it is natural to wonder if we may need more “categories” (i.e., collections of subsets of U) to describe every possible category in the universe (i.e., subset of U).

The notion of a complete Mammen structure seeks to add the requirement that every “category” is finitely described\(^1\) given S and C:

Definition

A Mammen model (U, S, C) is called complete if every $X \subseteq U$ can be written as

$$X = S \cup C$$

for some $S \in S$ and $C \in C$.

Remark: In a complete Mammen model, C is automatically an ideal.

\(^1\)In Mammen’s terminology, “finitely described” is called “decidable”.

Caltech logic seminar, 19 January 2022 Asger Tørnquist (U. of Copenhagen) Joint work with Jens Mammen (U. of Aalborg) Set theory and a proposed model of the mind in psychology 6 / 29
Complete Mammen models

Given a Mammen structure \((U, S, C)\), it is natural to wonder if we may need more “categories” (i.e., collections of subsets of \(U\)) to describe every possible category in the universe (i.e., subset of \(U\)).

The notion of a **complete** Mammen structure seeks to add the requirement that every “category” is **finitely described**\(^1\) given \(S\) and \(C\):

Definition

A Mammen model \((U, S, C)\) is called **complete** if every \(X \subseteq U\) can be written as

\[X = S \cup C \]

for some \(S \in S\) and \(C \in C\).

Remark: In a complete Mammen model, \(C\) is automatically an ideal.

\(^1\)In Mammen’s terminology, “finitely described” is called “decidable”.

Caltech logic seminar, 19 January 2022 Asger Tønquist (U. of Copenhagen) Joint work with Jens Mammen (U. of Aalborg)
Set theory and a proposed model of the mind in psychology

6 / 29
Do complete models exist?

Question: Do complete Mammen models exist?

In the early 1990s, Jørgen Hoffmann-Jørgensen, who was a professor of mathematics in Aarhus, explored this question together with Jens Mammen. Using the Axiom of Choice, he was able to answer it:

Theorem (Hoffmann-Jørgensen, 2000. Uses the Axiom of Choice)

There are complete Mammen models.

In fact, if T is any perfect Hausdorff topology on an infinite set U, then there is a finer perfect Hausdorff topology $S \supseteq T$ such that

$$(U, S, C)$$

is a complete Mammen model, with C being the family of closed discrete subsets of U in the topology S.
Do complete models exist?

Question: Do complete Mammen models exist?

In the early 1990s, Jørgen Hoffmann-Jørgensen, who was a professor of mathematics in Aarhus, explored this question together with Jens Mammen. Using the Axiom of Choice, he was able to answer it:

Theorem (Hoffmann-Jørgensen, 2000. Uses the Axiom of Choice)

There are complete Mammen models.

In fact, if T is any perfect Hausdorff topology on an infinite set U, then there is a finer perfect Hausdorff topology $S \supseteq T$ such that

$$(U, S, C)$$

is a complete Mammen model, with C being the family of closed discrete subsets of U in the topology S.
Do complete models exist?

Question: Do complete Mammen models exist?

In the early 1990s, Jørgen Hoffmann-Jørgensen, who was a professor of mathematics in Aarhus, explored this question together with Jens Mammen. Using the Axiom of Choice, he was able to answer it:

Theorem (Hoffmann-Jørgensen, 2000. Uses the Axiom of Choice)

There are complete Mammen models.

In fact, if T is any perfect Hausdorff topology on an infinite set U, then there is a finer perfect Hausdorff topology $S \supseteq T$ such that

$$(U, S, C)$$

is a complete Mammen model, with C being the family of closed discrete subsets of U in the topology S.
Do complete models exist?

Question: Do complete Mammen models exist?

In the early 1990s, Jørgen Hoffmann-Jørgensen, who was a professor of mathematics in Aarhus, explored this question together with Jens Mammen. Using the Axiom of Choice, he was able to answer it:

Theorem (Hoffmann-Jørgensen, 2000. Uses the Axiom of Choice)

There are complete Mammen models.

In fact, if T is any perfect Hausdorff topology on an infinite set U, then there is a finer perfect Hausdorff topology $S \supseteq T$ such that

$$(U, S, C)$$

is a complete Mammen model, with C being the family of closed discrete subsets of U in the topology S.
Do complete models exist?

Question: Do complete Mammen models exist?

In the early 1990s, Jørgen Hoffmann-Jørgensen, who was a professor of mathematics in Aarhus, explored this question together with Jens Mammen. Using the Axiom of Choice, he was able to answer it:

Theorem (Hoffmann-Jørgensen, 2000. Uses the Axiom of Choice)

There are complete Mammen models.

In fact, if T is any perfect Hausdorff topology on an infinite set U, then there is a finer perfect Hausdorff topology $S \supseteq T$ such that

$$(U, S, C)$$

is a complete Mammen model, with C being the family of closed discrete subsets of U in the topology S.
Question: Do complete Mammen models exist?

In the early 1990s, Jørgen Hoffmann-Jørgensen, who was a professor of mathematics in Aarhus, explored this question together with Jens Mammen. Using the Axiom of Choice, he was able to answer it:

Theorem (Hoffmann-Jørgensen, 2000. Uses the Axiom of Choice)

There are complete Mammen models.

In fact, if T is any perfect Hausdorff topology on an infinite set U, then there is a finer perfect Hausdorff topology $S \supseteq T$ such that

$$(U, S, C)$$

is a complete Mammen model, with C being the family of closed discrete subsets of U in the topology S.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of maximal perfect topologies:

Definition
A perfect topology T (on some set U) is called a **maximal perfect topology** if no topology which is strictly finer than T is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let T be perfect topology on U. Then the following are equivalent:

(a) T is a maximal perfect topology on U.
(b) For any $X \subseteq U$, if for all $V \in T$ we have $|X \cap V| \in \{0, \infty\}$ (i.e., $X \cap V$ is always empty or infinite), then $X \in T$.

Moreover, if (a) (or (b)) holds then every discrete set is closed.

This notion itself seems to go back to a paper by Hewitt from 1943.
Hoffmann-Jørgensen’s proof uses the idea of maximal perfect topologies:

Definition
A perfect topology \mathcal{T} (on some set U) is called a **maximal perfect topology** if no topology which is strictly finer than \mathcal{T} is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)
Let \mathcal{T} be perfect topology on U. Then the following are equivalent:

(a) \mathcal{T} is a maximal perfect topology on U.

(b) For any $X \subseteq U$, if for all $V \in \mathcal{T}$ we have $|X \cap V| \in \{0, \infty\}$ (i.e., $X \cap V$ is always empty or infinite), then $X \in \mathcal{T}$.

Moreover, if (a) (or (b)) holds then every discrete set is closed.

2This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of maximal perfect topologies:\footnote{This notion itself seems to go back to a paper by Hewitt from 1943.}

Definition

A perfect topology \(T \) (on some set \(U \)) is called a maximal perfect topology if no topology which is strictly finer than \(T \) is perfect.

A routine application of Zorn’s lemma shows:

> Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \(T \) be perfect topology on \(U \). Then the following are equivalent:

(a) \(T \) is a maximal perfect topology on \(U \).

(b) For any \(X \subseteq U \), if for all \(V \in T \) we have \(|X \cap V| \in \{0, \infty\} \) (i.e., \(X \cap V \) is always empty or infinite), then \(X \in T \).

Moreover, if (a) (or (b)) holds then every discrete set is closed.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of *maximal perfect topologies*:

Definition

A perfect topology \(\mathcal{T} \) (on some set \(U \)) is called a **maximal perfect topology** if no topology which is strictly finer than \(\mathcal{T} \) is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \(\mathcal{T} \) be perfect topology on \(U \). Then the following are equivalent:

(a) \(\mathcal{T} \) is a maximal perfect topology on \(U \).

(b) For any \(X \subseteq U \), if for all \(V \in \mathcal{T} \) we have \(|X \cap V| \in \{0, \infty\} \) (i.e., \(X \cap V \) is always empty or infinite), then \(X \in \mathcal{T} \).

Moreover, if (a) (or (b)) holds then every discrete set is closed.

\(^2\)This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of *maximal perfect topologies*:\(^2\):

Definition

A perfect topology \(\mathcal{T} \) (on some set \(U \)) is called a **maximal perfect topology** if no topology which is strictly finer than \(\mathcal{T} \) is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \(\mathcal{T} \) be perfect topology on \(U \). Then the following are equivalent:

(a) \(\mathcal{T} \) is a maximal perfect topology on \(U \).

(b) For any \(X \subseteq U \), if for all \(V \in \mathcal{T} \) we have \(|X \cap V| \in \{0, \infty\}\) (i.e., \(X \cap V \) is always empty or infinite), then \(X \in \mathcal{T} \).

Moreover, if (a) (or (b)) holds then every discrete set is closed.

\(^2\)This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of maximal perfect topologies\(^2\):

Definition

A perfect topology \(T\) (on some set \(U\)) is called a **maximal perfect topology** if no topology which is strictly finer than \(T\) is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \(T\) be perfect topology on \(U\). Then the following are equivalent:

(a) \(T\) is a maximal perfect topology on \(U\).

(b) For any \(X \subseteq U\), if for all \(V \in T\) we have \(|X \cap V| \in \{0, \infty\}\) (i.e., \(X \cap V\) is always empty or infinite), then \(X \in T\).

Moreover, if (a) (or (b)) holds then every discrete set is closed.

\(^2\)This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of maximal perfect topologies:\n
Definition

A perfect topology T (on some set U) is called a **maximal perfect topology** if no topology which is strictly finer than T is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let T be perfect topology on U. Then the following are equivalent:

1. T is a maximal perfect topology on U.
2. For any $X \subseteq U$, if for all $V \in T$ we have $|X \cap V| \in \{0, \infty\}$ (i.e., $X \cap V$ is always empty or infinite), then $X \in T$.

Moreover, if (a) (or (b)) holds then every discrete set is closed.

2 This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of *maximal perfect topologies*:

Definition

A perfect topology \mathcal{T} (on some set U) is called a **maximal perfect topology** if no topology which is strictly finer than \mathcal{T} is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \mathcal{T} be perfect topology on U. Then the following are equivalent:

(a) \mathcal{T} is a maximal perfect topology on U.

(b) For any $X \subseteq U$, if for all $V \in \mathcal{T}$ we have $|X \cap V| \in \{0, \infty\}$ (i.e., $X \cap V$ is always empty or infinite), then $X \in \mathcal{T}$.

Moreover, if (a) (or (b)) holds then every discrete set is closed.

2 This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of *maximal perfect topologies*\(^2\):

Definition
A perfect topology \(\mathcal{T} \) (on some set \(U \)) is called a **maximal perfect topology** if no topology which is strictly finer than \(\mathcal{T} \) is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \(\mathcal{T} \) be perfect topology on \(U \). Then the following are equivalent:

(a) \(\mathcal{T} \) is a maximal perfect topology on \(U \).

(b) For any \(X \subseteq U \), if for all \(V \in \mathcal{T} \) we have \(|X \cap V| \in \{0, \infty\} \) (i.e., \(X \cap V \) is always empty or infinite), then \(X \in \mathcal{T} \).

Moreover, if (a) (or (b)) holds then every discrete set is closed.

\(^2\)This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of *maximal perfect topologies*:

Definition

A perfect topology \mathcal{T} (on some set U) is called a **maximal perfect topology** if no topology which is strictly finer than \mathcal{T} is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \mathcal{T} be perfect topology on U. Then the following are equivalent:

(a) \mathcal{T} is a maximal perfect topology on U.

(b) For any $X \subseteq U$, if for all $V \in \mathcal{T}$ we have $|X \cap V| \in \{0, \infty\}$ (i.e., $X \cap V$ is always empty or infinite), then $X \in \mathcal{T}$.

Moreover, if (a) (or (b)) holds then every discrete set is closed.

2 This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of *maximal perfect topologies*\(^2\):

Definition

A perfect topology \(T \) (on some set \(U \)) is called a **maximal perfect topology** if no topology which is strictly finer than \(T \) is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \(T \) be perfect topology on \(U \). Then the following are equivalent:

(a) \(T \) is a maximal perfect topology on \(U \).

(b) For any \(X \subseteq U \), if for all \(V \in T \) we have \(|X \cap V| \in \{0, \infty\}\) (i.e., \(X \cap V \) is always empty or infinite), then \(X \in T \).

Moreover, if (a) (or (b)) holds then every discrete set is closed.

\(^2\)This notion itself seems to go back to a paper by Hewitt from 1943.
Maximal perfect topologies

Hoffmann-Jørgensen’s proof uses the idea of maximal perfect topologies:

Definition

A perfect topology \mathcal{T} (on some set U) is called a maximal perfect topology if no topology which is strictly finer than \mathcal{T} is perfect.

A routine application of Zorn’s lemma shows:

Any perfect topology is contained in a maximal perfect topology.

It’s also easy to see that:

Lemma (Lemma to remember!)

Let \mathcal{T} be perfect topology on U. Then the following are equivalent:

(a) \mathcal{T} is a maximal perfect topology on U.

(b) For any $X \subseteq U$, if for all $V \in \mathcal{T}$ we have $|X \cap V| \in \{0, \infty\}$ (i.e., $X \cap V$ is always empty or infinite), then $X \in \mathcal{T}$.

Moreover, if (a) (or (b)) holds then every discrete set is closed.

2This notion itself seems to go back to a paper by Hewitt from 1943.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “⇒” direction of:

Lemma (Hoffmann-Jørgensen)

* is a maximal perfect Hausdorff topology on a set * if and only if every set * can be written as

\[X = S \cup C, \]

where * ∈ *, and * is closed and discrete in the topology *.

Proof of “⇒”: Given * ⊆ *, let

\[C = \{ x \in X : (\exists V \in S) \; V \cap X = \{ x \} \}. \]

Then:
- * discrete and therefore closed.
- (\(\forall V \in S \)) |\(V \cap (X \setminus C) | \in \{ 0, \infty \} \) (use that * is Hausdorff).
- By the “Lemma to remember”, (\(X \setminus C \)) ∈ *.
- Now \(X = (X \setminus C) \cup C \) shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “\Rightarrow” direction of:

Lemma (Hoffmann-Jørgensen)

\(S \) is a maximal perfect Hausdorff topology on a set \(U \) if and only if every set \(X \subseteq U \) can be written as

\[X = S \cup C, \]

where \(S \in S \), and \(C \) is closed and discrete in the topology \(S \).

Proof of “\Rightarrow”: Given \(X \subseteq U \), let

\[C = \{ x \in X : (\exists V \in S) \ V \cap X = \{ x \} \}. \]

Then:

- \(C \) discrete and therefore closed.
- \((\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\}\) (use that \(S \) is Hausdorff).
- By the “Lemma to remember”, \((X \setminus C) \in S\).
- Now \(X = (X \setminus C) \cup C \) shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “⇒” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set $X \subseteq U$ can be written as

$$X = S \cup C,$$

where $S \in S$, and C is closed and discrete in the topology S.

Proof of “⇒”: Given $X \subseteq U$, let

$$C = \{x \in X : (\exists V \in S) \ V \cap X = \{x\}\}.$$

Then:

- C discrete and therefore closed.
- $(\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\}$ (use that S is Hausdorff).
- By the “Lemma to remember”, $(X \setminus C) \in S$.
- Now $X = (X \setminus C) \cup C$ shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “\implies” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set $X \subseteq U$ can be written as

$$X = S \cup C,$$

where $S \in S$, and C is closed and discrete in the topology S.

Proof of “\implies”: Given $X \subseteq U$, let

$$C = \{x \in X : (\exists V \in S) \ V \cap X = \{x\}\}.$$

Then:

- C discrete and therefore closed.
- $(\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\}$ (use that S is Hausdorff).
- By the “Lemma to remember”, $(X \setminus C) \in S$.
- Now $X = (X \setminus C) \cup C$ shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “\Rightarrow” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set $X \subseteq U$ can be written as

$$X = S \cup C,$$

where $S \in S$, and C is closed and discrete in the topology S.

Proof of “\Rightarrow”: Given $X \subseteq U$, let

$$C = \{x \in X : (\exists V \in S) \ V \cap X = \{x\}\}.$$

Then:

- C discrete and therefore closed.
- $(\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\}$ (use that S is Hausdorff).
- By the “Lemma to remember”, $(X \setminus C) \in S$.
- Now $X = (X \setminus C) \cup C$ shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “⇒” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set \(X \subseteq U \) *can be written as*

\[X = S \cup C, \]

where \(S \in S \), *and* \(C \) *is closed and discrete in the topology* \(S \).

Proof of “⇒”: Given \(X \subseteq U \), let

\[C = \{ x \in X : (\exists V \in S) \ V \cap X = \{ x \} \}. \]

Then:
- \(C \) discrete and therefore closed.
- \((\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\} \) (use that \(S \) is Hausdorff).
- By the "Lemma to remember", \((X \setminus C) \in S\).
- Now \(X = (X \setminus C) \cup C \) shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “\implies” direction of:

Lemma (Hoffmann-Jørgensen)

> S is a maximal perfect Hausdorff topology on a set U if and only if every set $X \subseteq U$ can be written as

$$X = S \cup C,$$

where $S \in S$, and C is closed and discrete in the topology S.

Proof of “\implies”: Given $X \subseteq U$, let

$$C = \{x \in X : (\exists V \in S) \ V \cap X = \{x\}\}.$$

Then:

- C discrete and therefore closed.
- $(\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\}$ (use that S is Hausdorff).
- By the “Lemma to remember”, $(X \setminus C) \in S$.
- Now $X = (X \setminus C) \cup C$ shows the required.
Hoffmann-Jørgensen’s theorem follows from the “⇒” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set *U* if and only if every set *X ⊆ U* can be written as

\[X = S \cup C, \]

where *S* ∈ *S*, and *C* is closed and discrete in the topology *S*.

Proof of “⇒”: Given *X ⊆ U*, let

\[C = \{ x \in X : (\exists V \in S) \ V \cap X = \{ x \} \}. \]

Then:

- *C* discrete and therefore closed.
- \((\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\} \) (use that *S* is Hausdorff).
- By the “Lemma to remember”, \((X \setminus C) \in S\).
- Now \(X = (X \setminus C) \cup C \) shows the required. \(\Box \)
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “⇒” direction of:

Lemma (Hoffmann-Jørgensen)

\[S \text{ is a maximal perfect Hausdorff topology on a set } U \text{ if and only if every set } X \subseteq U \text{ can be written as } \]

\[X = S \cup C, \]

where \(S \in S \), and \(C \) is closed and discrete in the topology \(S \).

Proof of “⇒”: Given \(X \subseteq U \), let

\[C = \{ x \in X : (\exists V \in S) \ V \cap X = \{x\} \}. \]

Then:

- \(C \) discrete and therefore closed.
- \((\forall V \in S) |V \cap (X \setminus C)| \in \{0, \infty\} \) (use that \(S \) is Hausdorff).
- By the “Lemma to remember”, \((X \setminus C) \in S \).
- Now \(X = (X \setminus C) \cup C \) shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “\Rightarrow” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set $X \subseteq U$ can be written as

$$X = S \cup C,$$

where $S \in S$, and C is closed and discrete in the topology S.

Proof of “\Rightarrow”: Given $X \subseteq U$, let

$$C = \{x \in X : (\exists V \in S) \ V \cap X = \{x\}\}.$$

Then:

- C discrete and therefore closed.
- $(\forall V \in S) \mid V \cap (X \setminus C)\mid \in \{0, \infty\}$ (use that S is Hausdorff).
- By the “Lemma to remember”, $(X \setminus C) \in S$.
- Now $X = (X \setminus C) \cup C$ shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “⇒” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set \(X \subseteq U \) *can be written as*

\[
X = S \cup C,
\]

where \(S \in S \), *and* \(C \) *is closed and discrete in the topology* \(S \).

Proof of “⇒”: Given \(X \subseteq U \), let

\[
C = \{ x \in X : (\exists V \in S) \ V \cap X = \{ x \} \}.
\]

Then:

- \(C \) discrete and therefore closed.
- \((\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\} \) (use that \(S \) is Hausdorff).
- By the “Lemma to remember”, \((X \setminus C) \in S \).
- Now \(X = (X \setminus C) \cup C \) shows the required.
Sketch of the proof of Hoffmann-Jørgensen’s theorem

Hoffmann-Jørgensen’s theorem follows from the “\iff” direction of:

Lemma (Hoffmann-Jørgensen)

S is a maximal perfect Hausdorff topology on a set U if and only if every set $X \subseteq U$ can be written as

$$X = S \cup C,$$

where $S \in S$, and C is closed and discrete in the topology S.

Proof of “\implies”: Given $X \subseteq U$, let

$$C = \{x \in X : (\exists V \in S) \ V \cap X = \{x\}\}.$$

Then:

- C discrete and therefore closed.
- $(\forall V \in S) \ |V \cap (X \setminus C)| \in \{0, \infty\}$ (use that S is Hausdorff).
- By the “Lemma to remember”, $(X \setminus C) \in S$.
- Now $X = (X \setminus C) \cup C$ shows the required.
Important corollary

Corollary

There is a complete Mammen model with a countable universe U.

Proof: Take $U = \mathbb{Q}$, and let S be a maximal perfect topology on \mathbb{Q} which is finer than the topology generated by open rational intervals.
Important corollary

Corollary

There is a complete Mammen model with a countable universe U.

Proof: Take $U = \mathbb{Q}$, and let \mathcal{S} be a maximal perfect topology on \mathbb{Q} which is finer than the topology generated by open rational intervals.
Corollary

There is a complete Mammen model with a countable universe U.

Proof: Take $U = \mathbb{Q}$, and let \mathcal{S} be a maximal perfect topology on \mathbb{Q} which is finer than the topology generated by open rational intervals.
Corollary

There is a complete Mammen model with a countable universe U.

Proof: Take $U = \mathbb{Q}$, and let S be a maximal perfect topology on \mathbb{Q} which is finer than the topology generated by open rational intervals.
Important corollary

Corollary

There is a complete Mammen model with a countable universe U.

Proof: Take $U = \mathbb{Q}$, and let S be a maximal perfect topology on \mathbb{Q} which is finer than the topology generated by open rational intervals.

☐
We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.
- *Especially* since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
The main question

We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.

- Especially since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
The main question

We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.
- Especially since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
The main question

We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.
- *Especially* since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
The main question

We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.
- *Especially* since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
The main question

We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.
- Especially since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
The main question

We now know that complete Mammen models exist, but at the price of having invoked the Axiom of Choice (AC).

- While I personally feel pretty relaxed about AC, it is a bit startling that we needed it to prove that complete Mammen models exist.
- *Especially* since we’d like to use complete Mammen models to model the human mind!

Hoffmann-Jørgensen conjectured, and spent considerable amounts of time trying to prove, that this use of AC is unavoidable:

Conjecture (Hoffmann-Jørgensen)

The existence of a complete Mammen model implies the Axiom of Choice.
Main results: Theorem A

Theorem A (T.-Mammen, 2021)

In Cohen’s first model, a model of set theory in which all axioms of ZF are true, but AC is false, any perfect topology can be extended to a maximal perfect topology.

It follows that the existence of a complete Mammen model does not imply the Axiom of Choice.
Main results: Theorem A

Theorem A (T.-Mammen, 2021)

In Cohen’s first model, a model of set theory in which all axioms of ZF are true, but AC is false, any perfect topology can be extended to a maximal perfect topology.

It follows that the existence of a complete Mammen model does not imply the Axiom of Choice.
Main results: Theorem A

Theorem A (T.-Mammen, 2021)

In Cohen’s first model, a model of set theory in which all axioms of ZF are true, but AC is false, any perfect topology can be extended to a maximal perfect topology.

It follows that the existence of a complete Mammen model does not imply the Axiom of Choice.
Main results: Theorem A

Theorem A (T.-Mammen, 2021)

In Cohen’s first model, a model of set theory in which all axioms of ZF are true, but AC is false, any perfect topology can be extended to a maximal perfect topology.

It follows that the existence of a complete Mammen model does not imply the Axiom of Choice.
Main results: Theorem A

Theorem A (T.-Mammen, 2021)

In Cohen’s first model, a model of set theory in which all axioms of ZF are true, but AC is false, any perfect topology can be extended to a maximal perfect topology.

It follows that the existence of a complete Mammen model does not imply the Axiom of Choice.
As a counterpoint to this, we also show that some substantial fragment of AC is needed to obtain a complete Mammen model:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \mathbb{R} are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.
Main results: Theorem B

As a counterpoint to this, we also show that some substantial fragment of AC is needed to obtain a complete Mammen model:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \(\mathbb{R}\) are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.
As a counterpoint to this, we also show that some substantial fragment of AC is needed to obtain a complete Mammen model:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \(\mathbb{R} \) are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.
As a counterpoint to this, we also show that some substantial fragment of AC is needed to obtain a complete Mammen model:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \mathbb{R} are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.
Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem**: Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma**: Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem**: Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma**: Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem**: Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma**: Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Theorem A

Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem:** Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma:** Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem:** Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma:** Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem**: Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma**: Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Theorem A

Theorem A is heavy set theory, so I will spare this audience discussing its proof. It suffices to remark:

Famously, in Cohen’s first model (of set theory without Choice) the following are true:

- **The Boolean prime ideal theorem**: Any ideal in a Boolean algebra can be extended to a prime ideal.
- **The Ultrafilter lemma**: Any filter can be extended to an ultrafilter.

This was proved in the late 1960s by Halpern and Levy.

The proof of Theorem A consists of appropriately tweaking the proof that the ultrafilter lemma holds in Cohen’s first model.
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with **Cantor space**,

$$2^{\mathbb{N}} = \{ f : \mathbb{N} \to \{0, 1\} : f \text{ is a function} \}.$$

- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0, 1\}$.

- **That is**: μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.

- It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^{\mathbb{N}}$ are μ-measurable”.

- We’ll usually identify $2^{\mathbb{N}}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with Cantor space,

$$2^\mathbb{N} = \{ f : \mathbb{N} \to \{0, 1\} : f \text{ is a function}\}.$$

- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0, 1\}$.
- **That is:** μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.
- It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^\mathbb{N}$ are μ-measurable”.
- We’ll usually identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with Cantor space,
 \[2^\mathbb{N} = \{ f : \mathbb{N} \to \{0, 1\} : f \text{ is a function} \}. \]
- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0, 1\}$.
- That is: μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.
- It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^\mathbb{N}$ are μ-measurable”.
- We’ll usually identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Theorem B

Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with Cantor space,

$$2^\mathbb{N} = \{ f : \mathbb{N} \to \{0, 1\} : f \text{ is a function} \}.$$

- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0, 1\}$.

- That is: μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.

- It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^\mathbb{N}$ are μ-measurable”.

- We’ll usually identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \(\mathbb{R} \), it is much easier to work with **Cantor space**,

\[
2^\mathbb{N} = \{ f : \mathbb{N} \rightarrow \{0, 1\} : f \text{ is a function} \}.
\]

- We equip Cantor space with the measure \(\mu \), which is the product of \(\mathbb{N} \) copies of the \((\frac{1}{2}, \frac{1}{2})\)-measure on the two-point space \{0, 1\}.

 - **That is**: \(\mu \) is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.

- It can be verified that the assumption “all subsets of \(\mathbb{R} \) are Lebesgue measurable” implies “all subsets of \(2^\mathbb{N} \) are \(\mu \)-measurable”.

- We’ll usually identify \(2^\mathbb{N} \) with \(\mathcal{P}(\mathbb{N}) \) (the power set of \(\mathbb{N} \)).
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with **Cantor space**,
 \[2^\mathbb{N} = \{ f : \mathbb{N} \rightarrow \{0, 1\} : f \text{ is a function} \}. \]
- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0, 1\}$.
- **That is:** μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.
 - It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^\mathbb{N}$ are μ-measurable”.
 - We’ll usually identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with **Cantor space**,

 \[2^\mathbb{N} = \{ f : \mathbb{N} \to \{0, 1\} : f \text{ is a function} \}. \]

- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0, 1\}$.

 That is: μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.

- It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^\mathbb{N}$ are μ-measurable”.

 - We’ll usually identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Joyfully, Theorem B is not heavy set theory. Instead, we need a basic measure-theoretic ingredient and a simple combinatorial ingredient (next two slides).

But first we switch our perspective a bit:

- From our point of view, rather than working with \mathbb{R}, it is much easier to work with **Cantor space**,

$$2^\mathbb{N} = \{ f : \mathbb{N} \to \{0,1\} : f \text{ is a function} \}.$$

- We equip Cantor space with the measure μ, which is the product of \mathbb{N} copies of the $(\frac{1}{2}, \frac{1}{2})$-measure on the two-point space $\{0,1\}$.
- **That is**: μ is the “coin flipping measure”, achieved from flipping a fair coin infinitely many times.
- It can be verified that the assumption “all subsets of \mathbb{R} are Lebesgue measurable” implies “all subsets of $2^\mathbb{N}$ are μ-measurable”.
- We’ll usually identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).
Measure-theoretic ingredient: E_0-invariance

The following Lemma is well-known:

Lemma

Let $A \subseteq 2^\mathbb{N}$. Suppose that A is closed under finite changes, that is:

> if $x, y \in A$ differ only finitely, and $x \in A$, then $y \in A$.

Suppose further that A is μ-measurable.

Then either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark: Very often in the literature, invariance under finite changes is called "E_0-invariance".
The following Lemma is well-known:

Lemma

Let $A \subseteq 2^\mathbb{N}$. Suppose that A is closed under finite changes, that is:

if $x, y \in A$ differ only finitely, and $x \in A$, then $y \in A$.

Suppose further that A is μ-measurable.

Then either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark: Very often in the literature, invariance under finite changes is called “E_0-invariance”.
Measure-theoretic ingredient: E_0-invariance

The following Lemma is well-known:

Lemma

Let $A \subseteq 2^\mathbb{N}$. Suppose that A is closed under finite changes, that is:

if $x, y \in A$ differ only finitely, and $x \in A$, then $y \in A$.

Suppose further that A is μ-measurable.

Then either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark: Very often in the literature, invariance under finite changes is called “E_0-invariance”.
The following Lemma is well-known:

Lemma

Let $A \subseteq 2^\mathbb{N}$. **Suppose that A is closed under finite changes, that is:**

if $x, y \in A$ differ only finitely, and $x \in A$, then $y \in A$.

Suppose further that A is μ-measurable.

Then either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark: Very often in the literature, invariance under finite changes is called “E_0-invariance”.
The following Lemma is well-known:

Lemma

Let $A \subseteq 2^\mathbb{N}$. Suppose that A is closed under finite changes, that is:

if $x, y \in A$ differ only finitely, and $x \in A$, then $y \in A$.

Suppose further that A is μ-measurable.

Then either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark: Very often in the literature, invariance under finite changes is called “E_0-invariance”.
The following Lemma is well-known:

Lemma

Let $A \subseteq 2^\mathbb{N}$. Suppose that A is closed under finite changes, that is:

if $x, y \in A$ differ only finitely, and $x \in A$, then $y \in A$.

Suppose further that A is μ-measurable.

Then either $\mu(A) = 0$ or $\mu(A) = 1$.

Remark: Very often in the literature, invariance under finite changes is called “E_0-invariance”.
The following Lemma is well-known:

Lemma

Let \(A \subseteq 2^\mathbb{N} \). Suppose that \(A \) is closed under finite changes, that is:

if \(x, y \in A \) differ only finitely, and \(x \in A \), then \(y \in A \).

Suppose further that \(A \) is \(\mu \)-measurable.

Then either \(\mu(A) = 0 \) or \(\mu(A) = 1 \).

Remark: Very often in the literature, invariance under finite changes is called “\(E_0 \)-invariance”.
The following Lemma is well-known:

Lemma

Let \(A \subseteq 2^\mathbb{N} \). Suppose that \(A \) is closed under finite changes, that is:

if \(x, y \in A \) differ only finitely, and \(x \in A \), then \(y \in A \).

Suppose further that \(A \) is \(\mu \)-measurable.

Then either \(\mu(A) = 0 \) or \(\mu(A) = 1 \).

Remark: Very often in the literature, invariance under finite changes is called “\(E_0 \)-invariance”.

Measure-theoretic ingredient: \(E_0 \)-invariance
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\[(*) \quad \text{For any } V \in S \setminus \{\emptyset\} \text{ the sets } V \cap X \text{ and } V \setminus X \text{ are infinite.} \]

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then

 \[X = S \cup C \]

 for some \(S \in S\) and \(C \in C\).

- By \((*)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).

- A similar argument shows \(U \setminus X \in C\).

- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then

\[X = S \cup C\]

for some \(S \in S\) and \(C \in C\).

- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).

- A similar argument shows \(U \setminus X \in C\).

- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Combinatorial ingredient

Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then
 \[
 X = S \cup C
 \]
 for some \(S \in S\) and \(C \in C\).
- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).
- A similar argument shows \(U \setminus X \in C\).
- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then

\[X = S \cup C\]

for some \(S \in S\) and \(C \in C\).

- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).

- A similar argument shows \(U \setminus X \in C\).

- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then
 \[X = S \cup C\]
 for some \(S \in S\) and \(C \in C\).
- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).
- A similar argument shows \(U \setminus X \in C\).
- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then

\[X = S \cup C \]

for some \(S \in S\) and \(C \in C\).

- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).

- A similar argument shows \(U \setminus X \in C\).

- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Proposition (Proposition to remember!)

Let (U, S, C) be a Mammen model. Suppose there is $X \subseteq U$ such that:

(*) For any $V \in S \setminus \{\emptyset\}$ the sets $V \cap X$ and $V \setminus X$ are infinite.

Then (U, S, C) is not complete.

Proof:

- If (U, S, C) were complete, then

 $$X = S \cup C$$

 for some $S \in S$ and $C \in C$.

- By (*) we can’t have $S \neq \emptyset$ (since $S \subseteq X$), so we must have $X = C$.
- A similar argument shows $U \setminus X \in C$.
- Now $U = X \cup (U \setminus X) \in C$, contradicting that $S \cap C = \{\emptyset\}$.
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then
 \[X = S \cup C\]
 for some \(S \in S\) and \(C \in C\).
- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).
- A similar argument shows \(U \setminus X \in C\).
- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Combinatorial ingredient

Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\[(*) \quad \text{For any } V \in S \setminus \{\emptyset\} \text{ the sets } V \cap X \text{ and } V \setminus X \text{ are infinite.} \]

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then
 \[X = S \cup C \]
 for some \(S \in S\) and \(C \in C\).
- By \((*)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).
- A similar argument shows \(U \setminus X \in C\).
- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Combinatorial ingredient

Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((*)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then

 \[X = S \cup C \]

 for some \(S \in S\) and \(C \in C\).
- By \((*)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).
- A similar argument shows \(U \setminus X \in C\).
- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
Proposition (Proposition to remember!)

Let \((U, S, C)\) be a Mammen model. Suppose there is \(X \subseteq U\) such that:

\((\ast)\) For any \(V \in S \setminus \{\emptyset\}\) the sets \(V \cap X\) and \(V \setminus X\) are infinite.

Then \((U, S, C)\) is not complete.

Proof:

- If \((U, S, C)\) were complete, then
 \[X = S \cup C\]
 for some \(S \in S\) and \(C \in C\).
- By \((\ast)\) we can’t have \(S \neq \emptyset\) (since \(S \subseteq X\)), so we must have \(X = C\).
- A similar argument shows \(U \setminus X \in C\).
- Now \(U = X \cup (U \setminus X) \in C\), contradicting that \(S \cap C = \{\emptyset\}\).
We are now ready to prove Theorem B. Recall what it says again:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \mathbb{R} are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.

The plan, of course, is to take a Mammen model (\mathbb{N}, S, C) with universe \mathbb{N}, and show it is not complete.
We are now ready to prove Theorem B. Recall what it says again:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \mathbb{R} are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.

The plan, of course, is to take a Mammen model (\mathbb{N}, S, C) with universe \mathbb{N}, and show it is not complete.
We are now ready to prove Theorem B. Recall what it says again:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \(\mathbb{R} \) are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.

The plan, of course, is to take a Mammen model \((\mathbb{N}, S, C)\) with universe \(\mathbb{N}\), and show it is not complete.
We are now ready to prove Theorem B. Recall what it says again:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \mathbb{R} are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.

The plan, of course, is to take a Mammen model (\mathbb{N}, S, C) with universe \mathbb{N}, and show it is not complete.
We are now ready to prove Theorem B. Recall what it says again:

Theorem B (T.-Mammen, 2021)

Assume ZF+ “all subsets of \mathbb{R} are Lebesgue measurable” (alternatively, Baire measurable). Then there is no complete Mammen model with a countable universe.

The plan, of course, is to take a Mammen model (\mathbb{N}, S, C) with universe \mathbb{N}, and show it is not complete.
Sketch of Theorem B

Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let $(\mathbb{N}, S, \mathcal{C})$ be a Mammen model. **We will show that $(\mathbb{N}, S, \mathcal{C})$ is not complete.**

Let

$$\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}.$$

Note: \mathcal{A}_n is closed under finite changes ("E_0-invariant").
Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function $\rho(A) = A^c$.

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. **We will show that (\mathbb{N}, S, C) is not complete.**

Let

$$A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}.$$

Note: A_n is closed under finite changes ("E_0-invariant").
Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function $\rho(A) = A^c$.

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let $(\mathbb{N}, S, \mathcal{C})$ be a Mammen model. We will show that $(\mathbb{N}, S, \mathcal{C})$ is not complete.

Let $A_n = \{A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0\}$.

Note: A_n is closed under finite changes ("E_0-invariant").
Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. We will show that (\mathbb{N}, S, C) is not complete.

Let

$$A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}.$$

Note: A_n is closed under finite changes (“E_0-invariant”).
Sketch of Theorem B

Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let $(\mathbb{N}, S, \mathcal{C})$ be a Mammen model. **We will show that $(\mathbb{N}, S, \mathcal{C})$ is not complete.**

Let

$$A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}. $$

Note: A_n is closed under finite changes ("E_0-invariant").
Sketch of Theorem B

Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. **We will show that (\mathbb{N}, S, C) is not complete.**

Let

$$A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}.$$

Note: A_n is closed under finite changes ("E_0-invariant").
Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. We will show that (\mathbb{N}, S, C) is not complete.

Let

$$A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}.$$

Note: A_n is closed under finite changes (“E_0-invariant”).
Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. **We will show that (\mathbb{N}, S, C) is not complete.**

Let

$$A_n = \{A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0\}.$$

Note: A_n is closed under finite changes (“E_0-invariant”).
Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. We will show that (\mathbb{N}, S, C) is not complete.

Let

$$\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}. $$

Note: \mathcal{A}_n is closed under finite changes ("E_0-invariant").
Sketch of Theorem B

Proof of Theorem B: Assume all subsets of $2^\mathbb{N}$ are μ-measurable.

To make life easier, we will identify $2^\mathbb{N}$ with $\mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}).

For $A \subseteq \mathbb{N}$, let $A^c = \mathbb{N} \setminus A$.

We let $\rho : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be the complementation function

$$\rho(A) = A^c.$$

Easy fact: ρ is μ-preserving, i.e. if $A \subseteq \mathcal{P}(\mathbb{N})$ then $\mu(\rho(A)) = \mu(A)$.

Let (\mathbb{N}, S, C) be a Mammen model. We will show that (\mathbb{N}, S, C) is not complete.

Let

$$\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \}.$$

Note: \mathcal{A}_n is closed under finite changes ("E_0-invariant").
Claim 1: With

\[\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = \mathcal{A}_n \cup \rho(\mathcal{A}_n). \]

Proof \(^3\): Suppose not. Let \(A \notin \mathcal{A}_n \cup \rho(\mathcal{A}_n) \).

- By definition of \(\mathcal{A}_n \) we can find \(V, V' \in S \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(S \) is a perfect topology.

\(^3\)The proof only uses that \(S \) is a perfect topology!
Claim 1: With

\[\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = \mathcal{A}_n \cup \rho(\mathcal{A}_n). \]

Proof \(^3\): Suppose not. Let \(A \notin \mathcal{A}_n \cup \rho(\mathcal{A}_n) \).

- By definition of \(\mathcal{A}_n \) we can find \(V, V' \in S \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(S \) is a perfect topology.

\(^3\)The proof only uses that \(S \) is a perfect topology!
Claim 1: With

\[\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in \mathcal{S}) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = \mathcal{A}_n \cup \rho(\mathcal{A}_n). \]

Proof: Suppose not. Let \(A \notin \mathcal{A}_n \cup \rho(\mathcal{A}_n) \).

- By definition of \(\mathcal{A}_n \) we can find \(V, V' \in \mathcal{S} \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.

- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.

- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).

- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(\mathcal{S} \) is a perfect topology.

\[^3 \text{The proof only uses that } \mathcal{S} \text{ is a perfect topology!} \]
Claim 1: With

\[\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in \mathcal{S}) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = \mathcal{A}_n \cup \rho(\mathcal{A}_n). \]

Proof: Suppose not. Let \(A \notin \mathcal{A}_n \cup \rho(\mathcal{A}_n). \)

- By definition of \(\mathcal{A}_n \) we can find \(V, V' \in \mathcal{S} \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(\mathcal{S} \) is a perfect topology.

\(^3\)The proof only uses that \(\mathcal{S} \) is a perfect topology!
Claim 1: With

\[A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = A_n \cup \rho(A_n). \]

Proof: Suppose not. Let \(A \notin A_n \cup \rho(A_n) \).

- By definition of \(A_n \) we can find \(V, V' \in S \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(S \) is a perfect topology.

\[^3 \text{The proof only uses that } S \text{ is a perfect topology!} \]
Sketch of Theorem B (cont’d)

Claim 1: With

\[\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in \mathcal{S}) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = \mathcal{A}_n \cup \rho(\mathcal{A}_n). \]

Proof 3: Suppose not. Let \(A \notin \mathcal{A}_n \cup \rho(\mathcal{A}_n) \).

- By definition of \(\mathcal{A}_n \) we can find \(V, V' \in \mathcal{S} \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(\mathcal{S} \) is a perfect topology.

\[^3 \text{The proof only uses that } \mathcal{S} \text{ is a perfect topology!} \]
Claim 1: With

\[A_n = \{A \subseteq \mathbb{N} : (\forall V \in \mathcal{S}) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = A_n \cup \rho(A_n). \]

Proof: Suppose not. Let \(A \notin A_n \cup \rho(A_n). \)

- By definition of \(A_n \) we can find \(V, V' \in \mathcal{S} \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.

- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.

- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).

- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(\mathcal{S} \) is a perfect topology.

The proof only uses that \(\mathcal{S} \) is a perfect topology!
Claim 1: With

\[A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = A_n \cup \rho(A_n). \]

Proof: Suppose not. Let \(A \not\in A_n \cup \rho(A_n). \)

- By definition of \(A_n \) we can find \(V, V' \in S \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(S \) is a perfect topology.

The proof only uses that \(S \) is a perfect topology!
Claim 1: With

\[A_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = A_n \cup \rho(A_n). \]

Proof ³: Suppose not. Let \(A \notin A_n \cup \rho(A_n). \)

- By definition of \(A_n \) we can find \(V, V' \in S \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(S \) is a perfect topology.

³The proof only uses that \(S \) is a perfect topology!
Claim 1: With

\[\mathcal{A}_n = \{ A \subseteq \mathbb{N} : (\forall V \in S) \ n \in V \implies |V \cap A| = \aleph_0 \} \]

as on the previous slide, we have

\[\mathcal{P}(\mathbb{N}) = \mathcal{A}_n \cup \rho(\mathcal{A}_n). \]

Proof: Suppose not. Let \(A \notin \mathcal{A}_n \cup \rho(\mathcal{A}_n) \).

- By definition of \(\mathcal{A}_n \) we can find \(V, V' \in S \) such that \(n \in V \) and \(n \in V' \) such that \(A \cap V \) and \(A^c \cap V' \) are finite.
- Then \(V \cap V' \cap A \) and \(V \cap V' \cap A^c \) are finite, proving that \(V \cap V' \) is finite.
- Since \(n \in V \cap V' \), we have \(V \cap V' \neq \emptyset \).
- Then \(V \cap V' \) is a finite non-empty open set, contradicting that \(S \) is a perfect topology.

\[^3 \text{The proof only uses that } S \text{ is a perfect topology!} \]
Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^\mathbb{N}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:

- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that

$$A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N}).$$
Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^\mathbb{N}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:
- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that $A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N})$.

Claim 2 \square
Sketch of Theorem B (cont’d)

Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^{\mathbb{N}}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:

- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that $A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N})$.
Sketch of Theorem B (cont’d)

Recall that we are assuming that all subsets of \(\mathcal{P}(\mathbb{N}) \sim 2^{\mathbb{N}} \) are \(\mu \)-measurable.

Claim 2: \(\mu(A_n) = 1 \) and \(\mu(\rho(A_n)) = 1 \).

Proof:

- \(A_n \) is invariant under finite changes ("\(E_0 \)-invariant") and \(\mu \)-measurable (since we’re assuming all sets are).
- So if \(\mu(A_n) < 1 \) we must have \(\mu(A_n) = 0 \).
- But then since \(\rho \) preserves \(\mu \), we must have \(\mu(\rho(A_n)) = 0 \), too.
- This contradicts that claim 1 on the previous slide, which said that

\[
A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N}).
\]
Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^\mathbb{N}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:

- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that

$$A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N}).$$
Sketch of Theorem B (cont’d)

Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^\mathbb{N}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:

- A_n is invariant under finite changes (“E_0-invariant”) and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that

 $$A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N}).$$

Claim 2
Sketch of Theorem B (cont’d)

Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^\mathbb{N}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:

- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that

\[A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N}). \]
Sketch of Theorem B (cont’d)

Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^{\mathbb{N}}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:

- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that $A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N})$.

Claim 2
Recall that we are assuming that all subsets of $\mathcal{P}(\mathbb{N}) \sim 2^\mathbb{N}$ are μ-measurable.

Claim 2: $\mu(A_n) = 1$ and $\mu(\rho(A_n)) = 1$.

Proof:
- A_n is invariant under finite changes ("E_0-invariant") and μ-measurable (since we’re assuming all sets are).
- So if $\mu(A_n) < 1$ we must have $\mu(A_n) = 0$.
- But then since ρ preserves μ, we must have $\mu(\rho(A_n)) = 0$, too.
- This contradicts that claim 1 on the previous slide, which said that $A_n \cup \rho(A_n) = \mathcal{P}(\mathbb{N})$.

Claim 2
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that

\[\mu(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).

- If \(V \in \mathcal{S} \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that

\[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in \mathcal{S} \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.

- Now the “Proposition to remember” gives us that \((\mathbb{N}, \mathcal{S}, \mathcal{C}) \) is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that
 \[\mu\left(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)\right) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).

- If \(V \in \mathcal{S} \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that
 \[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in \mathcal{S} \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.

- Now the “Proposition to remember” gives us that \((\mathbb{N}, \mathcal{S}, \mathcal{C})\) is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that

\[\mu(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).

- If \(V \in \mathcal{S} \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that

\[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in \mathcal{S} \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.

- Now the “Proposition to remember” gives us that \((\mathbb{N}, \mathcal{S}, \mathcal{C})\) is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that

$$\mu\left(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)\right) = 1.$$

- So there is $X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)$.

- If $V \in \mathcal{S}$ is non-empty, then there is some $n \in V$, and so by definition of A_n we must have that

$$|V \cap X| = |V \cap X^c| = \infty.$$

- So for any $V \in \mathcal{S} \setminus \{\emptyset\}$, the sets $V \cap X$ and $V \setminus X$ are infinite.

- Now the “Proposition to remember” gives us that $(\mathbb{N}, \mathcal{S}, \mathcal{C})$ is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that

\[\mu(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).

- If \(V \in S \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that

\[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in S \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.

- Now the “Proposition to remember” gives us that \((\mathbb{N}, S, C)\) is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that

\[\mu\left(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \right) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).
- If \(V \in \mathcal{S} \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that

\[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in \mathcal{S} \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.
- Now the “Proposition to remember” gives us that \((\mathbb{N}, \mathcal{S}, \mathcal{C})\) is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that
 \[\mu(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n)) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).

- If \(V \in \mathcal{S} \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that
 \[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in \mathcal{S} \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.

- Now the “Proposition to remember” gives us that \((\mathbb{N}, \mathcal{S}, \mathcal{C})\) is not complete.
Finally, we can finish the proof of Theorem B:

- By Claim 2, we have that
 \[\mu \left(\bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \right) = 1. \]

- So there is \(X \in \bigcap_{n \in \mathbb{N}} A_n \cap \bigcap_{n \in \mathbb{N}} \rho(A_n) \).

- If \(V \in S \) is non-empty, then there is some \(n \in V \), and so by definition of \(A_n \) we must have that
 \[|V \cap X| = |V \cap X^c| = \infty. \]

- So for any \(V \in S \setminus \{\emptyset\} \), the sets \(V \cap X \) and \(V \setminus X \) are infinite.

- Now the “Proposition to remember” gives us that \((\mathbb{N}, S, C)\) is not complete.

Theorem B \(\square \)
In Solovay’s model, where all sets are Lebesgue measurable, Theorem B gives the following corollary as a counterpoint to Theorem A:

Corollary

*There is a model of set theory without the Axiom of Choice in which there are no complete Mammen models with universe \mathbb{N}.***
Corollary in Solovay’s model of ZF

In Solovay’s model, where all sets are Lebesgue measurable, Theorem B gives the following corollary as a counterpoint to Theorem A:

Corollary

There is a model of set theory without the Axiom of Choice in which there are no complete Mammen models with universe \(\mathbb{N} \).
In Solovay’s model, where all sets are Lebesgue measurable, Theorem B gives the following corollary as a counterpoint to Theorem A:

Corollary

There is a model of set theory without the Axiom of Choice in which there are no complete Mammen models with universe \mathbb{N}.
In Solovay’s model, where all sets are Lebesgue measurable, Theorem B gives the following corollary as a counterpoint to Theorem A:

Corollary

There is a model of set theory without the Axiom of Choice in which there are no complete Mammen models with universe \mathbb{N}.
We will now make some final comments about the cardinality of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

Corollary

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.
We will now make some final comments about the \textbf{cardinality} of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

\textbf{Theorem (Mammen, 1980s)}

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

\textbf{Corollary}

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.
We will now make some final comments about the cardinality of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

Corollary

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.

Caltech logic seminar, 19 January 2022 Asger Tønquist (U. of Copenhagen) Joint work with Jens Mammen (U. of Aalborg)

Set theory and a proposed model of the mind in psychology

24 / 29
Cardinal invariants and questions

We will now make some final comments about the **cardinality** of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

Corollary

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.
We will now make some final comments about the cardinality of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

*If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.***

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

Corollary

*The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.***
We will now make some final comments about the cardinality of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P} (\mathbb{N})$, we get:

Corollary

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.
We will now make some final comments about the cardinality of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

Corollary

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.
We will now make some final comments about the cardinality of S (the topology, i.e., the family of sense categories) in complete Mammen models (with universe \mathbb{N}).

Mammen has proved the following (using the “Proposition to remember”):

Theorem (Mammen, 1980s)

If (U, S, C) is a complete Mammen model, then $|S| > \aleph_0$.

Since if $U = \mathbb{N}$ we have $S \subseteq \mathcal{P}(\mathbb{N})$, we get:

Corollary

The Continuum Hypothesis, CH, i.e., $2^{\aleph_0} = \aleph_1$, implies that the cardinality of S in a complete Mammen model with universe \mathbb{N} is \aleph_1.
Mammen asked if $|S| = 2^{\aleph_0}$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin’s Axiom:

Theorem (T.-Mammen, 2021)

Assume Martin’s Axiom holds (along with all the usual axioms of ZFC). Then $|S| = 2^{\aleph_0}$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(\text{BP})$ (the additivity of the ideal of meager sets).
Mammen asked if $|S| = 2^{\aleph_0}$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin’s Axiom:

Theorem (T.-Mammen, 2021)

Assume **Martin’s Axiom** holds (along with all the usual axioms of ZFC). Then $|S| = 2^{\aleph_0}$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(BP)$ (the additivity of the ideal of meager sets).
Martin’s axiom result

Mammen asked if $|S| = 2^{\aleph_0}$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin’s Axiom:

Theorem (T.-Mammen, 2021)

Assume Martin’s Axiom holds (along with all the usual axioms of ZFC). Then $|S| = 2^{\aleph_0}$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(BP)$ (the additivity of the ideal of meager sets).
Martin’s axiom result

Mammen asked if $|S| = 2^{\aleph_0}$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin’s Axiom:

Theorem (T.-Mammen, 2021)

Assume Martin’s Axiom holds (along with all the usual axioms of ZFC). Then $|S| = 2^{\aleph_0}$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(BP)$ (the additivity of the ideal of meager sets).
Mammen asked if $|S| = 2^\aleph_0$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin’s Axiom:

Theorem (T.-Mammen, 2021)

Assume Martin’s Axiom holds (along with all the usual axioms of ZFC). Then $|S| = 2^\aleph_0$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(\text{BP})$ (the additivity of the ideal of meager sets).
Martin's axiom result

Mammen asked if $|S| = 2^\aleph_0$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin's Axiom:

Theorem (T.-Mammen, 2021)

Assume Martin's Axiom holds (along with all the usual axioms of ZFC). Then $|S| = 2^\aleph_0$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(\text{BP})$ (the additivity of the ideal of meager sets).
Mammen asked if $|S| = 2^{\aleph_0}$ always holds, even if CH is false (i.e., even if $2^{\aleph_0} > \aleph_1$), for any S in a complete Mammen model with universe \mathbb{N}.

It turns out that this is not so: The answer depends heavily on which model of set theory we consider.

A positive answer can be given, assuming Martin's Axiom:

Theorem (T.-Mammen, 2021)

Assume Martin's Axiom holds (along with all the usual axioms of ZFC). Then $|S| = 2^{\aleph_0}$ for any S in a complete Mammen model with universe \mathbb{N}.

In fact, a better result could be stated: $|S| \geq \text{add}(BP)$ (the additivity of the ideal of meager sets).
However, a **negative** answer to Mammen’s question can be provided in the so called “Baumgartner-Laver model”.

The Baumgartner-Laver model is a model of ZFC in which $2^{\aleph_0} = \aleph_2$, *and so the Continuum Hypothesis fails in this model. The model is obtained using iterated forcing by adding* \aleph_2 *Sacks reals, starting with a model of CH.*

Theorem (T.-Mammen, 2021)

In the Baumgartner-Laver model of ZFC, in which $2^{\aleph_0} = \aleph_2$ *holds, there is a complete Mammen model* (\mathbb{N}, S, C) *with*

$$|S| = \aleph_1 < 2^{\aleph_0}.$$
Result in the Baumgartner-Laver model

However, a **negative** answer to Mammen’s question can be provided in the so called “Baumgartner-Laver model”.

The Baumgartner-Laver model is a model of ZFC in which $2^{\aleph_0} = \aleph_2$, and so the Continuum Hypothesis fails in this model. The model is obtained using iterated forcing by adding \aleph_2 Sacks reals, starting with a model of CH.

Theorem (T.-Mammen, 2021)

In the Baumgartner-Laver model of ZFC, in which $2^{\aleph_0} = \aleph_2$ holds, there is a complete Mammen model (\mathbb{N}, S, C) with

$$|S| = \aleph_1 < 2^{\aleph_0}.$$
However, a **negative** answer to Mammen’s question can be provided in the so called “Baumgartner-Laver model”.

The Baumgartner-Laver model is a model of ZFC in which $2^{\aleph_0} = \aleph_2$, and so the Continuum Hypothesis fails in this model. The model is obtained using iterated forcing by adding \aleph_2 Sacks reals, starting with a model of CH.

Theorem (T.-Mammen, 2021)

In the Baumgartner-Laver model of ZFC, in which $2^{\aleph_0} = \aleph_2$ holds, there is a complete Mammen model (\mathbb{N}, S, C) with

$$|S| = \aleph_1 < 2^{\aleph_0}.$$
However, a **negative** answer to Mammen’s question can be provided in the so called “Baumgartner-Laver model”.

The Baumgartner-Laver model is a model of ZFC in which $2^{\aleph_0} = \aleph_2$, and so the Continuum Hypothesis fails in this model. The model is obtained using iterated forcing by adding \aleph_2 Sacks reals, starting with a model of CH.

Theorem (T.-Mammen, 2021)

In the Baumgartner-Laver model of ZFC, in which $2^{\aleph_0} = \aleph_2$ holds, there is a complete Mammen model $(\mathbb{N}, \mathcal{S}, \mathcal{C})$ with

$$|\mathcal{S}| = \aleph_1 < 2^{\aleph_0}.$$
However, a **negative** answer to Mammen’s question can be provided in the so called “Baumgartner-Laver model”.

The Baumgartner-Laver model is a model of ZFC in which $2^\aleph_0 = \aleph_2$, and so the Continuum Hypothesis fails in this model. The model is obtained using iterated forcing by adding \aleph_2 Sacks reals, starting with a model of CH.

Theorem (T.-Mammen, 2021)

In the Baumgartner-Laver model of ZFC, in which $2^\aleph_0 = \aleph_2$ holds, there is a complete Mammen model (\mathbb{N}, S, C) with

$$|S| = \aleph_1 < 2^{\aleph_0}.$$
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. *Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?*

2. *Does the ultrafilter lemma (“all filters can be extended to an ultrafilter”) imply the existence of a complete Mammen model?*

3. *Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?*

4. *Does the existence of a complete Mammen model imply that there is a maximal perfect topology?*

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?

2. Does the ultrafilter lemma (“all filters can be extended to an ultrafilter”) imply the existence of a complete Mammen model?

3. Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?

4. Does the existence of a complete Mammen model imply that there is a maximal perfect topology?

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?

2. Does the ultrafilter lemma (“all filters can be extended to an ultrafilter”) imply the existence of a complete Mammen model?

3. Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?

4. Does the existence of a complete Mammen model imply that there is a maximal perfect topology?

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. *Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?*

2. *Does the ultrafilter lemma (“all filters can be extended to an ultrafilter”) imply the existence of a complete Mammen model?*

3. *Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?*

4. *Does the existence of a complete Mammen model imply that there is a maximal perfect topology?*

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. Does "there exists a non-principal ultrafilter" imply that there exists a complete Mammen model?

2. Does the ultrafilter lemma ("all filters can be extended to an ultrafilter") imply the existence of a complete Mammen model?

3. Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?

4. Does the existence of a complete Mammen model imply that there is a maximal perfect topology?

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).

Caltech logic seminar, 19 January 2022 Asger Tørnquist (U. of Copenhagen) Joint work with Jens Mammen (U. of Aalborg)
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. *Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?*

2. *Does the ultrafilter lemma ("all filters can be extended to an ultrafilter") imply the existence of a complete Mammen model?*

3. *Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?*

4. *Does the existence of a complete Mammen model imply that there is a maximal perfect topology?*

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. **Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?**

2. **Does the ultrafilter lemma (“all filters can be extended to an ultrafilter”) imply the existence of a complete Mammen model?**

3. **Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?**

4. **Does the existence of a complete Mammen model imply that there is a maximal perfect topology?**

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Open questions

There are a number of questions still left open. The most interesting are:

Questions

1. Does “there exists a non-principal ultrafilter” imply that there exists a complete Mammen model?

2. Does the ultrafilter lemma (“all filters can be extended to an ultrafilter”) imply the existence of a complete Mammen model?

3. Equivalent to the previous: Does the compactness theorem in first order logic imply the existence of a complete Mammen model?

4. Does the existence of a complete Mammen model imply that there is a maximal perfect topology?

Finally, the last two theorems, about the cardinality of S in complete Mammen models, hints at a general project of determining the spectrum of possible cardinalities of such S (at least with the underlying set being \mathbb{N}).
Some references:

Some references:

Some references:

Some references:

Some references:

Thank you for your attention!