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Graphings and equidecompositions

A probability measure preserving (pmp) Borel graph is called a
graphing. Graphings are locally finite today.

Γ a set of isometries of Rn. A,B ⊆ Rn are Γ-equidecomposable if
there are finite partitions A = ∪k

n=1An,B = ∪k
n=1Bn and

γ1, . . . , γk ∈ Γ such that Ai = γiBi .

Given a finite Γ, A and B admit a Γ-equidecomposition iff the
measurably bipartite graphing V (G ) = A ∪∗ B ,
E (G ) = {(a, b) : ∃γ ∈ Γ γa = b} admits a perfect matching Γ.

Banach, Tarski (1924): Any two bounded sets of nonempty interior
in R3 are equidecomposable.



Amenable group actions

A group is amenable if it admits no paradoxical decomposition.
E.g., isometries of the plane.

Tarski (1925): Are the unit square and the disc of unit area
equidecomposable by isometries?

Laczkovich (1990): Yes!

Grabowski, Máthé, Pikhurko (2017): Measurable
equidecomposition

Marks, Unger (2017): Borel equidecomposition

Máthé, Noel, Pikhurko (2021): Jordan-measurable pieces

These proofs use translations only. They give equidecomposition of
bounded sets with equal measure and box dimension < n in Rn.



Gardner’s conjecture

〈Γ〉 is the subgroup generated by Γ.

Gardner (1991): A,B ⊆ Rn bounded measurable, Γ set of
isometries. 〈Γ〉 is amenable and A and B are Γ-equidecomposable.
Are A and B measurably equidecomposable by isometries?

Cieśla, Sabok (2019): Holds if Γ is commutative and A and B are
Γ-uniform. Including free pmp group actions.

Bowen, K, Sabok (2021): Holds if Γ is amenable, Z2 ∗ Z2 is not a
quotient by a finite normal subgroup and A and B are Γ-uniform.
Including free pmp group actions.

Laczkovich (1988): Γ is not sufficient.

K (2021): 〈Γ〉 is not sufficient.



Expansion (in bipartite graphings)

We assume that for every measurable set µ(N(S)) > (1 + ε)µ(S).
Includes pmp ergodic actions of Kazhdan Property (T) groups.

Banach-Ruziewicz problem: For n > 1 is the only SO(n)-invariant
finitely additive probability measure on Sn the Lebesgue measure?

Margulis (1980), Sullivan (1981): n ≥ 4

Drinfeld (1984): n ≥ 2

Lyons, Nazarov (2011): Every bipartite Cayley graph of a
non-amenable group admits a factor of iid perfect matching.

Grabowski, Máthé, Pikhurko (2017): n ≥ 3,A,B ⊆ Rn bounded
measurable of nonempty interior, λ(A) = λ(B). Then A and B are
measurably equidecomposable.



Graphings without measurable matchings

Laczkovich (1988): 2-regular acyclic graphing without measurable
perfect matching.

Conley, Kechris (2013): Modified it to d -regular for even d .

An (essentially) acyclic graphing is called a treeing.

Marks (2013): d -regular treeing without Borel perfect matching for
d > 2.

Kechris, Marks (2018): Does every 3-regular graphing admit a
measurable perfect matching?

K (2021): Measurably bipartite d -regular treeing without
measurable perfect matching for d > 2. Moreover, every bounded
measurable circulation in L1 is a.e. zero.



Ends of hyperfinite graphings

A graphing is hyperfinite if the induced equivalence relation is an
increasing union of equivalence relations with finite classes.
Includes pmp Schreier graphs of amenable groups.

The number of ends in a graph is the supremum of infinite
components after the removal of a finite cutset. A hyperfinite
graphing is a.e. zero-ended iff a.e. component is finite, a.e.
one-ended if it has a.e. superlinear growth, and a.e. two-ended iff it
has a.e. linear growth.

Timár (2018): A one-ended Cayley graph admits a factor of iid a.s.
one-ended spanning subforest.

Conley, Gaboriau, Marks, Tucker-Drob (2021): An a.e. one-ended
graphing has a measurable a.e. one-ended spanning subforest.



Main results

BKS: Assume that a bipartite graphing G admits a measurable
fractional perfect matching τ and the support of τ is hyperfinite
and one-ended. Then G admits a measurable perfect matching.

Same holds for rounding flows with integral capacities. Applications
to equidecompositions: Gardner, measurable circle squaring.

Regular hyperfinite one-ended bipartite graphings admit measurable
perfect matchings.

BKS: A bipartite Cayley graph admits a factor of iid perfect
matching iff the group is not isomorphic to Z n H for an odd H.

Timár (2021): Factor matching of optimal tail between Poisson
processes on the plane



Measurable circle squaring using independent translations

Laczkovich (1990): Circle squaring using random translations

Consider the measurable bipartite graphing. Take two set of random
translations (black+white) and the two equidecompositions. This
gives a black (white) measurable fractional perfect matching.

We suffice to show that the union of the two supports is a.e.
one-ended or finite. If a black+white component does not contain
an infinite black (white) then OK. If it contains infinitely many
infinite black (white) then it has superlinear growth.

The union of the set of components containing finitely many but
> 0 infinite black and white components is a nullset: we can
choose a "Vitali type set", e.g., the set of vertices in infinite black
components closest to infinite white ones.



A close construction

Lemma: ∀d ≥ 3, ε > 0 there exists a treeing T s.t. ∆(T ) = d , the
set of vertices with degree less than d has measure less than ε and
every circulation in Las

1 (E (T )) is zero a. e.

We construct a sequence of finite graphs {Gn}∞n=1 recursively.
G1 = Kd ,d . An ⊂ {−1, 0,+1}E(Gn) antisymmetric functions.
Choose N(n, ε) = 2n3|E(Gn)|

ε and set
Vn+1 = Πf ∈A(Gn){1, . . . ,N(ε, n)},
V (Gn+1) = V (Gn)× Vn+1 and E (Gn+1) =
{ ((x,v), (x’,v’)): (x,x’) ∈ E (Gn), ∀f ∈ An v ′f − vf = f (v , v ′)}.

Set V (T ) = Π∞n=1Vn. This is a treeing. E (T ) = ∩∞n=1π
−1
n E (Gn).



Why are circulations trivial?

For every n, g ∈ An, circulation f ∈ Las
1 (E (T )), we have∫

e∈E(T ) f (e)g(πn(e)) = 0,

since there exists p ∈ RV (G) potential s.t. g(x , y) = p(y)− p(x).

Let f ∈ Las
1 (E (T )) circulation. There exist an n and g ∈ An

approximating sign(f ) such that ‖fg(πn)− |f |‖1 ≤ ‖f ‖1/2.

By the triangle inequality
0 =

∫
E(T ) fg(πn) =

∫
E(T ) |f |+

∫
E(T ) fg(πn)− |f | ≥ ‖f ‖1/2, hence

f is zero a. e.
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Sketch of the rest

We suffice to find a treeing without non-zero bounded circulation
s.t. the degrees are divisible by d : the vertices of such a treeing can
be split into vertices of degree d .

We start with a treeing T with large maximum degree (2d2) and
close average degree (2d2 − 1/d). As a preparation we find a
subtreeing where the minimum degree is at least d and every vertex
has at least three neighbors with degree divisible by d .

Choose a d -tuple of vertices at even, close distance all with the
same degree modulo d and rewire the extra edges by replacing the
with paths. Iterate. The total length of these paths is
<<

∫
[0,1] log(x)dx <∞.
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Proof sketch for matchings: extreme points

Consider the set of measurable fractional perfect matchings. By
Krein-Milman this is the convex hull of the extreme points.

Lemma: The fractional part of an extreme point τ is a.e. zero or
half. The set of edges where τ is half is essentially a vertex-disjoint
union of bi-infinite paths.

The set of edges where the fractional value is integral is essentially
acyclic: else we could add or subtract a circuit on a set of positive
measure. By hyperfiniteness this is a disjoint union of paths. It
should be half on every path, else we could round it.



Proof sketch for matchings: using cycles from tiling

Given τ that is integral everywhere, but on a disjoint union of
infinite paths where its fractional part is half. Consider a family of
cycles C that covers at least half of the edges of these paths at
least K times for a large K , and every other edge at most once.

Consider τ ′ = (1− λ)τ + λτ0 and add or subtract for every cycle in
C the +/− ε-circuit randomly and for disjoint cycles independently.

The total distance from integers on τ ′ is smaler than on τ : the gain
will have a factor O(K 1/2) to outweigh the loss...



Thank you!
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