Subgroups of \mathcal{L}_I which do not embed into F
This is joint work with James Hyde (Cornell)

Preprint available arXiv:2103.14911
PLoI: The group of all orientation preserving homeomorphisms of \mathbb{R}^2 which are piecewise linear.

"Subgroups of PLoI ... have been a source of groups with interesting properties in which calculations are practical." — Matt Brin

Thompson's Group F: All $f \in \text{PLoI}$ which have breakpoints at dyadic rationals and whose slopes are powers of 2.
How to think about F:

Brin’s Ubiquity Theorem

If $G \leq \text{Homeo} I$, J is an orbital of J and some element of G reaches one end of J but not the other, then $F \rightarrow G$.

Example

Suppose that $f, g \in \text{Homeo} I$

$supt(f) = (a, b)$ \hspace{1cm} $supt(g) = (c, d)$

$a < c < b < d$ \hspace{1cm} and \hspace{1cm} $f(c) \geq g(b)$.

Then $\langle f, g \rangle \equiv F$.
General Program Understand the quasi-order of finitely generated subgroups of $\text{Pl}_0 \text{I}$ ordered by embeddability (homo-morphic).

The Thesis This order should be highly structured (but complex!) below Thompson's group F, whose structure should completely break down above F.

Conjecture (Brin) Any finitely generated subgroup of $\text{Pl}_0 \text{I}$ either is embeddable into F or else contains F.

Conjecture (Brin, Sapir) If $G \leq \text{Pl}_0 \text{I}$ does not contain F, G is an elementary (amenable) group
Theorem (Bleak, Brin, M.) There are elementary groups \(G_\xi \) \((\xi \leq \xi_0) \) such that:

1. \(G_0 \) is the trivial group and \(G_{\xi+1} \cong G_\xi + \mathbb{Z} \).
2. For all \(\xi, \eta \leq \xi_0 \), \(G_\xi \cong G_\eta \) iff \(\xi = \eta \).
3. Each \(G_\xi \) is elementary with class \(\alpha_\xi < \xi_0 \) where \(\sup_{\xi \leq \xi_0} \alpha_\xi = \xi_0 \).
This talk: Establish a criteria for when a subgroup of PL_0I does not embed into F.

Theorem (Lodha) The Stein groups $F_{p,q}$ do not embed into F if p,q are relatively prime.

Reason: The groups of germs have rank >1 and this is not possible in F.

Theorem (Hyde, M.) If $f, g \in \text{PLO}I$ are an F-obstruction and $\varphi : <f, g> \overset{1:1}{\rightarrow} \text{PLO}I$ is a monomorphism, then $(\varphi(f), \varphi(g))$ is an F-obstruction.
Prop If \(f \in F \leq Pz_0 I \), then \(f_\gamma \) is not an \(F \)-obstruction.

Remark: \(F \) contains an \(F \)-obstruction for each \(p, q \) with \(\gcd(p, q) = 1 \).

Cleary's "Golden ratio \(F \)" contains an \(F \)-obstruction.
Poincaré's Rotation Number

Suppose that \(\gamma \) is a homeomorphism of \(\mathbb{R}/\mathbb{Z} \) and \(\gamma \) is a lift. The rotation \(\Omega \) of \(\gamma \) is the limit

\[
\theta = \lim_{n \to \infty} \frac{\gamma^n(x) - x}{n}
\]

modulo 1. Does not depend on \(x \) or \(\gamma \).

Theorem (Poincaré) The rotation \(\Omega \) being irrational implies that \(\gamma \) is topologically semiconjugate to a rotation by \(\theta \).

Theorem (Herman) If \(\gamma \) is PL, e.g. Then \(\gamma \) is in fact topologically conjugate to a rotation by its rotation \(\Omega \).
What is an F-obstruction?

Suppose $f, g \in \text{PL}_0 I$ and $s \in I$ and $s \leq f(s) \leq g(s) \leq f(g(s))$.

Define $\gamma : [s, g(s)) \to [s, g(s))$ by $\gamma(t) = \gamma^m(f(t))$ where m is unique such that $\gamma^m(f(t)) \in [s, g(s))$. (m is unique and either 0 or -1).

This γ is a homeomorphism of the circle.
The rotation of f is the rotation number of f modulo g at s.

fg is an F-obstruction if for some s, the rotation number of f modulo g at s is irrational.

(Also, symmetric to this so that if fg is an F-obstruction, so is f^{-1}, g, f, g^{-1}, etc.)
F = PL, I doesn't contain F-obstructions

Theorem (Ghys-Sergiescu) Thompson's group T does not contain elements with irrational rotation #.
Analysis of 1-orbital F-obstructions

The first step is to show that if \(f \) is an F-obstruction and \(J \) is the orbital of \(\phi_g \) witnessing \(\text{th} \), then there is an abuse \(A, B \subseteq J \) such that

if \(a < b \) and \(a \in A, \ b \in B \), then \(\text{th}(A, B) \).

\[\text{Supp}(A) \cap J = (a, b). \]
A dichotomy theorem for subgroups of Pl"oI

Suppose that $G \leq \text{Pl}_0I$ and J, K_0, \ldots, K_n are orbitals of G and G is resolvable on J. Then either:

1. There is some $g \in G$ such that $\text{supp}(g) \supset J + 1$ and yet $\text{supp}(g)$ is disjoint from K_i's.

2. There is a G-equivariant monotone $\gamma : K_i \rightarrow J$ for some $i = c, \ldots, n$.

$\gamma(g(x)) = g(\gamma(x))$
Open Problems

1. If $G \leq \text{PL}_0 I$ does not contain an F-obstruction and is finitely generated, must $G \subset F$?

2. Suppose $G \leq \text{PL}_0 I$ is finitely generated and does not embedd into F. Must G have an orbit which is somewhere dense?

3. Does $F + \mathbb{Q} = \{ f^{t + t + q} : q \in \mathbb{Q} \} \leq \text{Homeo} \mathbb{R}$ fail to embed into F?