An unpublished theorem of Solovay on OD partitions of the reals into two non-OD parts, revisited

Vladimir Kanovei (IITP, Moscow)

Caltech Logic Seminar 15 March 2021
Table of contents

- Solovay’s partition theorem
- On indiscernible sets of reals
- Silver’s canonization theorem
- Solovay to Enayat 25.10.2002
- Double-bubble pairs, DBP
- Extension of DBPs
- Transfinite sequences of DBPs
- Containment
- Proof of Lemma 1
- Containment Lemma 2
- Proof of Lemma 2
- The sequence of DBPs
- Solovay’s equivalence relations
- Proof parts 1, 2
- Proof part 3
- Proof part 4
- Proof part 5
- References
Let $a \in 2^\omega$ be Sacks generic over L. Then it is true in $L[a]$ that

1) there is a partition $2^\omega \setminus L = A \cup B$, of the Π^1_2 set $2^\omega \setminus L$ of all nonconstructible reals, such that

2) the associated equivalence relation on $2^\omega \setminus L$ is lightface Π^1_2, hence the partition is OD as an unordered pair

3) A, B are non-OD, equivalently, A, B are OD-indiscernible.
Let $a \in 2^\omega$ be Sacks generic over L. Then it is true in $L[a]$ that

1) there is a partition $2^\omega \setminus L = A \cup B$, of the Π^1_2 set $2^\omega \setminus L$ of all nonconstructible reals, such that

2) the associated equivalence relation on $2^\omega \setminus L$ is lightface Π^1_2, hence the partition is OD as an unordered pair

3) A, B are non-OD, equivalently, A, B are OD-indiscernible.

The theorem also holds for Miller forcing (superperfect sets in ω^ω) and E_0-large forcing (Borel sets $X \subseteq 2^\omega$ s. t. $E_0 \upharpoonright X$ is nonsmooth).
Let $a \in 2^\omega$ be **Sacks generic** over L. Then it is true in $L[a]$ that

1) there is a partition $2^\omega \setminus L = A \cup B$, of the Π^1_2 set $2^\omega \setminus L$ of all nonconstructible reals, such that

2) the associated equivalence relation on $2^\omega \setminus L$ is lightface Π^1_2, hence the partition is OD as an unordered pair

3) A, B are non-OD, equivalently, A, B are OD-indiscernible.

The theorem also holds for **Miller forcing** (superperfect sets in ω^ω) and **\mathcal{E}_0-large forcing** (Borel sets $X \subseteq 2^\omega$ s. t. $\mathcal{E}_0 \upharpoonright X$ is nonsmooth).

Problem

Figure out the cases of **Cohen, random, Silver etc.** forcing notions.
Example (early years of forcing)

Let $\langle a, b \rangle$ be a Sacks \times Sacks generic pair of reals over L. Then it is true in $L[a]$ that the L-degrees $[a]_L$ and $[b]_L$ are indiscernible non-OD sets but their unordered pair \{ $[a]_L$, $[b]_L$ \} is OD.

Example (GKL)

There is a generic extension of L in which it holds that there exist disjoint countable indiscernible non-OD sets $X, Y \subseteq 2^{\omega}$ such that their union $X \cup Y$ and the associated equivalence relation are Π^1_2.

It is a key novelty of the Solovay partition theorem that, unlike these and similar examples, the indiscernible partition in the Sacks extension of L is not related to any sort of mutually generic reals.

See e.g. FGH, GH on some modern research related to indiscernible sets.
Example (early years of forcing)

Let $\langle a, b \rangle$ be a Sacks \times Sacks generic pair of reals over L. Then it is true in $L[a]$ that the L-degrees $[a]_L$ and $[b]_L$ are indiscernible non-OD sets but their unordered pair $\{[a]_L, [b]_L\}$ is OD.
Example (early years of forcing)

Let \(\langle a, b \rangle \) be a Sacks \(\times \) Sacks generic pair of reals over \(L \). Then it is true in \(L[a] \) that the \(L \)-degrees \([a]_L \) and \([b]_L \) are indiscernible non-OD sets but their unordered pair \(\{ [a]_L, [b]_L \} \) is OD.

Example (GKL)

There is a generic extension of \(L \) in which it holds that there exist disjoint countable indiscernible non-OD sets \(X, Y \subseteq 2^\omega \) such that their union \(X \cup Y \) and the associated equivalence relation are \(\Pi^1_2 \).
Example (early years of forcing)
Let $\langle a, b \rangle$ be a Sacks \times Sacks generic pair of reals over L. Then it is true in $L[a]$ that the L-degrees $[a]_L$ and $[b]_L$ are indiscernible non-OD sets but their unordered pair $\{[a]_L, [b]_L\}$ is OD.

Example (GKL)
There is a generic extension of L in which it holds that there exist disjoint countable indiscernible non-OD sets $X, Y \subseteq 2^\omega$ such that their union $X \cup Y$ and the associated equivalence relation are Π^1_2.

It is a key novelty of the Solovay partition theorem that, unlike these and similar examples, the indiscernible partition in the Sacks extension of L is not related to any sort of mutually generic reals.
Example (early years of forcing)

Let \(\langle a, b \rangle \) be a Sacks \(\times \) Sacks generic pair of reals over \(L \). Then it is true in \(L[a] \) that the \(L \)-degrees \([a]_L\) and \([b]_L\) are indiscernible non-OD sets but their unordered pair \([[a]_L, [b]_L]\) is OD.

Example (GKL)

There is a generic extension of \(L \) in which it holds that there exist disjoint countable indiscernible non-OD sets \(X, Y \subseteq 2^\omega \) such that their union \(X \cup Y \) and the associated equivalence relation are \(\Pi^1_2 \).

It is a key novelty of the Solovay partition theorem that, unlike these and similar examples, the indiscernible partition in the Sacks extension of \(L \) is not related to any sort of mutually generic reals.

See e.g. FGH, GH on some modern research related to indiscernible sets.
Silver’s canonization theorem

Theorem (Silver)

Let E be a Borel equivalence relation on a Borel uncountable set X in a Polish space. There is a perfect set $Y \subseteq X$ such that:

- either $E \upharpoonright Y$ is the equality
- all elements of Y are E-equivalent.

If E is ctble then we have only the either case.

This is a sine qua non of the proof of the Solovay partition theorem for the Sacks extensions.

Suitable more complex canonization results known from KSZ are used for the cases of Miller and E_0-large forcing.
Theorem (Silver)

Let E be a Borel equivalence relation on a Borel uncountable set X in a Polish space. There is a perfect set $Y \subseteq X$ such that:

- either $E \upharpoonright Y$ is the equality
- or all elements of Y are E-equivalent.

If E is ctbly, then we have only the either case.

This is a sine qua non of the proof of the Solovay partition theorem for the Sacks extensions.

Suitable more complex canonization results known from KSZ are used for the cases of Miller and E_0-large forcing.
Silver’s canonization theorem

Theorem (Silver)

Let \(E \) be a Borel equivalence relation on a Borel uncountable set \(X \) in a Polish space. There is a perfect set \(Y \subseteq X \) such that:

- **either** \(E \upharpoonright Y \) is the equality
- **or** all elements of \(Y \) are \(E \)-equivalent.

If \(E \) is ctble then we have only the **either** case.
Theorem (Silver)

Let \(E \) be a Borel equivalence relation on a Borel uncountable set \(X \) in a Polish space. There is a perfect set \(Y \subseteq X \) such that:

either \(E \upharpoonright Y \) is the equality

or all elements of \(Y \) are \(E \)-equivalent.

If \(E \) is ctb\(\ell \)e then we have only the either case.

This is a sine qua non of the proof of the Solovay partition theorem for the Sacks extensions.
Theorem (Silver)

Let E be a Borel equivalence relation on a Borel uncountable set X in a Polish space. There is a perfect set $Y \subseteq X$ such that:

- either $E \restriction Y$ is the equality
- or all elements of Y are E-equivalent.

If E is ctble then we have only the either case.

This is a sine qua non of the proof of the Solovay partition theorem for the Sacks extensions.

Suitable more complex canonization results known from KSZ are used for the cases of Miller and \mathcal{E}_0-large forcing.
Let $P \in L$ be the Sacks forcing.
Let $P \in \mathbf{L}$ be the Sacks forcing.

By a transfinite construction of length \aleph_1 I construct a P-name E such that the following are forced:

- E is an equivalence relation on the set of non-constructible reals.
Let $P \in \mathbb{L}$ be the Sacks forcing.

By a transfinite construction of length \aleph_1 I construct a P-name E such that the following are forced:

- E is an equivalence relation on the set of non-constructible reals.
- E has precisely two equivalence classes.
Let $P \in \mathbb{L}$ be the Sacks forcing.

By a transfinite construction of length \aleph_1 I construct a P-name E such that the following are forced:

- E is an equivalence relation on the set of non-constructible reals.
- E has precisely two equivalence classes.
- In each perfect set with constructible code there are representatives of both equivalence classes.
Let $P \in \mathbb{L}$ be the Sacks forcing.

By a transfinite construction of length \aleph_1 I construct a P-name E such that the following are forced:

- E is an equivalence relation on the set of non-constructible reals.
- E has precisely two equivalence classes.
- In each perfect set with constructible code there are representatives of both equivalence classes.
- E is ordinal definable.

The two distinct but indiscernable members of the generic extension are the two equivalence classes of E.
Let $P \in \mathbf{L}$ be the Sacks forcing.

By a transfinite construction of length \aleph_1 I construct a P-name E such that the following are forced:

- E is an equivalence relation on the set of non-constructible reals.
- E has precisely two equivalence classes.
- In each perfect set with constructible code there are representatives of both equivalence classes.
- E is ordinal definable.

The two distinct but indiscernable members of the generic extension are the two equivalence classes of E.

The proof is a bit too involved to type in using a web-interface like yahoo. (Shades of Fermat’s margin!) […]

– Bob
A double-bubble pair, DBP, is a pair of countable Borel equivalence relations \(\langle E, D \rangle \) on \(2^\omega \), such that each D-class is the union of exactly two distinct E-classes (in particular \(E \subsetneq D \)).
Definition

A double-bubble pair, DBP, is a pair of countable Borel equivalence relations \(\langle E, D \rangle \) on \(2^\omega \), such that each D-class is the union of exactly two distinct E-classes (in particular \(E \subseteq \neq D \)).

Thus a DBP \(\langle E, D \rangle \) can be seen as a Borel partition of \(2^\omega \) into countable parts by D, plus a finer Borel partition by E that splits each D-class in exactly two non-empty half-classes.
Definition

A double-bubble pair, DBP, is a pair of *countable* Borel equivalence relations \(\langle E, D \rangle \) on \(2^\omega \), such that each D-class is the union of exactly two distinct E-classes (in particular \(E \not\subseteq D \)).

Thus a DBP \(\langle E, D \rangle \) can be seen as a *Borel* partition of \(2^\omega \) into *countable* parts by D, plus a *finer* Borel partition by E that splits each D-class in exactly two non-empty *half-classes*.

Example

Define \(E_0^{\text{even}} \) on \(2^\omega \) so that \(x \ E_0^{\text{even}} y \) iff \(\{ n : x(n) \neq y(n) \} \) has a finite *even* number of elements. Then \(\langle E_0^{\text{even}}, E_0 \rangle \) is a DBP.
Extension of DBPs

Definition

A DBP $\langle E', D' \rangle$ extends $\langle E, D \rangle$, in symbol $\langle E, D \rangle \lessapprox \langle E', D' \rangle$, if $D \subseteq D'$ and $E \subseteq E'$, and $D \setminus E \subseteq D' \setminus E'$, so that, for any $x, y \in 2^\omega$, if $x \in [y]_{D \setminus E}$, then we still have $x \in [y]_{D' \setminus E'}$.

Thus extension of a DBP $\langle E, D \rangle$ means coarsening (that is merging classes into bigger classes) of the D-partition and E-subpartition, that honors the original splitting of D-classes into E-halfclasses.
A DBP \(\langle E', D' \rangle \) extends \(\langle E, D \rangle \), in symbol \(\langle E, D \rangle \preceq \langle E', D' \rangle \), if

- \(D \subseteq D' \) and \(E \subseteq E' \), and

Thus extension of a DBP \(\langle E, D \rangle \) means coarsening (that is merging classes into bigger classes) of the D-partition and E-subpartition, that honors the original splitting of D-classes into E-halfclasses.
Definition

A DBP \(\langle E', D' \rangle \) *extends* \(\langle E, D \rangle \), in symbol \(\langle E, D \rangle \preceq \langle E', D' \rangle \), if

- \(D \subseteq D' \) and \(E \subseteq E' \), and
- \(D \setminus E \subseteq D' \setminus E' \), so that, for any \(x, y \in 2^\omega \), if \(x \in [y]_D \setminus [y]_E \) then we still have \(x \in [y]_{D'} \setminus [y]_{E'} \).
Definition

A DBP \(\langle E', D' \rangle \) extends \(\langle E, D \rangle \), in symbol \(\langle E, D \rangle \preccurlyeq \langle E', D' \rangle \), if

- \(D \subseteq D' \) and \(E \subseteq E' \), and
- \(D \setminus E \subseteq D' \setminus E' \), so that, for any \(x, y \in 2^\omega \), if \(x \in [y]_D \setminus [y]_E \) then we still have \(x \in [y]_{D'} \setminus [y]_{E'} \).

Thus extension of a DBP \(\langle E, D \rangle \) means coarsening (that is merging classes into bigger classes) of the D-partition and E-subpartition, that honors the original splitting of D-classes into E-halfclasses.
It follows that if \(\lambda \in \text{Ord} \) is limit and \(\langle E_{\alpha}, D_{\alpha} \rangle_{\alpha \lessdot \lambda} \) is a \(\preceq \)-increasing sequence then the limit pair \(\lim \limits_{\alpha \to \lambda} \langle E_{\alpha}, D_{\alpha} \rangle = \langle \bigcup_{\alpha < \lambda} E_{\alpha}, \bigcup_{\alpha < \lambda} D_{\alpha} \rangle \) is a DBP extending each \(\langle E_{\alpha}, D_{\alpha} \rangle \).
It follows that if $\lambda \in \text{Ord}$ is limit and $\langle E_\alpha, D_\alpha \rangle_{\alpha<\lambda}$ is a \preceq-increasing sequence then the limit pair $\lim_{\alpha \to \lambda} \langle E_\alpha, D_\alpha \rangle = \langle \bigcup_{\alpha<\lambda} E_\alpha, \bigcup_{\alpha<\lambda} D_\alpha \rangle$ is a DBP extending each $\langle E_\alpha, D_\alpha \rangle$.

This will allow us to define, in \mathbf{L}, an increasing transfinite sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha<\omega_1}$ of DBPs such that $\bigcup_{\alpha<\omega_1} D_\alpha$ will be essentially the total equivalence while accordingly the union $E = \bigcup_{\alpha<\lambda} E_\alpha$ will lead to the proof of the Solovay theorem.
It follows that if $\lambda \in \text{Ord}$ is limit and $\langle E_\alpha, D_\alpha \rangle_{\alpha < \lambda}$ is a \leq-increasing sequence then the limit pair $\lim_{\alpha \to \lambda} \langle E_\alpha, D_\alpha \rangle = \langle \bigcup_{\alpha < \lambda} E_\alpha, \bigcup_{\alpha < \lambda} D_\alpha \rangle$ is a DBP extending each $\langle E_\alpha, D_\alpha \rangle$.

This will allow us to define, in \mathbf{L}, an increasing transfinite sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha < \omega_1}$ of DBPs such that $\bigcup_{\alpha < \omega_1} D_\alpha$ will be essentially the total equivalence while accordingly the union $E = \bigcup_{\alpha < \lambda} E_\alpha$ will lead to the proof of the Solovay theorem.

But we have to specify passages from $\langle E_\alpha, D_\alpha \rangle$ to $\langle E_{\alpha+1}, D_{\alpha+1} \rangle$.
Definition

Given a set $X \subseteq 2^\omega$ and a map $f : X \to 2^\omega$, a DBP $\langle E, D \rangle$:

- contains f if $f \subseteq D$, that is, $f(x) \in \{x\} \cap D$ for all $x \in X$;
- negatively contains f if $f(x) \in \{x\} \setminus \{y\} \cap E$ for all $x \in X$.
Definition

Given a set $X \subseteq 2^\omega$ and a map $f : X \to 2^\omega$, a DBP $\langle E, D \rangle$:

- contains f if $f \subseteq D$, that is, $f(x) \in [x]_D$ for all $x \in X$;
Definition

Given a set $X \subseteq 2^\omega$ and a map $f : X \to 2^\omega$, a DBP $\langle E, D \rangle$:

- **contains** f if $f \subseteq D$, that is, $f(x) \in [x]_D$ for all $x \in X$;

- **negatively contains** f if $f(x) \in [x]_D \setminus [x]_E$ for all $x \in X$.
Definition

Given a set $X \subseteq 2^\omega$ and a map $f : X \rightarrow 2^\omega$, a DBP $\langle E, D \rangle$:

- **contains** f if $f \subseteq D$, that is, $f(x) \in [x]_D$ for all $x \in X$;
- **negatively contains** f if $f(x) \in [x]_D \setminus [x]_E$ for all $x \in X$.

Lemma 1 (Containment Lemma 1)

Assume that $\langle E, D \rangle$ is a DBP, $X \subseteq 2^\omega$ is a perfect set, and $f : X \rightarrow 2^\omega$ is Borel and 1-1. Then there exist:

- a perfect set $Y \subseteq X$, and
- a DBP $\langle E', D' \rangle$ which extends $\langle E, D \rangle$ and contains $f \upharpoonright Y$.
Proof of Lemma 1

WLOG assume that \(f(x) \neq x \) for all \(x \in X \).
Proof of Lemma 1

WLOG assume that $f(x) \neq x$ for all $x \in X$.
As $E \subseteq D$ are ctble relations, using Silver’s canonization theorem, we get a perfect set $Y \subseteq X$ such that if $x \neq y$ belong to Y then
Proof of Lemma 1

WLOG assume that $f(x) \neq x$ for all $x \in X$.
As $E \subseteq D$ are ctble relations, using *Silver’s canonization theorem*,
we get a perfect set $Y \subseteq X$ such that if $x \neq y$ belong to Y then

a. $x \not\in y$ — hence $x \not\in y$ as well,
Proof of Lemma 1

WLOG assume that $f(x) \neq x$ for all $x \in X$.
As $E \subseteq D$ are ctble relations, using Silver’s canonization theorem, we get a perfect set $Y \subseteq X$ such that if $x \neq y$ belong to Y then

- **a** $x \not\in y$ — hence $x \not\in E y$ as well,

- **b** $f(x) \not\in f(y)$ — hence $f(x) \not\in E f(y)$ (also use that f is 1-1),
Proof of Lemma 1

WLOG assume that \(f(x) \neq x \) for all \(x \in X \). As \(E \subseteq D \) are ctble relations, using Silver’s canonization theorem, we get a perfect set \(Y \subseteq X \) such that if \(x \neq y \) belong to \(Y \) then

a \(x \not\in Y \) — hence \(x \not\in E \) \(y \) as well,

b \(f(x) \not\in f(y) \) — hence \(f(x) \not\in E f(y) \) (also use that \(f \) is 1-1),

c \(x \not\in f(y) \) — also in case \(x = y \).
Proof of Lemma 1

WLOG assume that \(f(x) \neq x \) for all \(x \in X \).

As \(E \subseteq D \) are ctble relations, using **Silver's canonization theorem**, we get a perfect set \(Y \subseteq X \) such that if \(x \neq y \) belong to \(Y \) then

\[a \quad x \not\in Y \quad \text{— hence } x \notin Y \text{ as well}, \]
\[b \quad f(x) \not\in f(y) \quad \text{— hence } f(x) \notin f(y) \text{ (also use that } f \text{ is 1-1)}, \]
\[c \quad x \not\in f(y) \quad \text{— also in case } x = y. \]

Let \(\Delta = [Y \cup f[Y]]_D \), **critical domain**.
Proof of Lemma 1

WLOG assume that \(f(x) \neq x \) for all \(x \in X \).
As \(E \subseteq D \) are ctble relations, using Silver's canonization theorem, we get a perfect set \(Y \subseteq X \) such that if \(x \neq y \) belong to \(Y \) then

\[a \quad x \not\in y \quad \text{— hence } x \not\in y \text{ as well,} \]

\[b \quad f(x) \not\in f(y) \quad \text{— hence } f(x) \not\in f(y) \text{ (also use that } f \text{ is 1-1),} \]

\[c \quad x \not\in f(y) \quad \text{— also in case } x = y. \]

Let \(\Delta = [Y \cup f[Y]]_D \), critical domain.

Now cook up \(\langle E', D' \rangle \).

- If \(x \not\in \Delta \) then no extension: \([x]_{D'} = [x]_D \) and \([x]_{E'} = [x]_E \).
Proof of Lemma 1

WLOG assume that \(f(x) \neq x \) for all \(x \in X \).

As \(E \subseteq D \) are ctble relations, using Silver’s canonization theorem, we get a perfect set \(Y \subseteq X \) such that if \(x \neq y \) belong to \(Y \) then

a. \(x \not\in Y \) — hence \(x \not\in f(Y) \) as well,

b. \(f(x) \not\in Y \) — hence \(f(x) \not\in f(Y) \) (also use that \(f \) is 1-1),

c. \(x \not\in f(Y) \) — also in case \(x = y \).

Let \(\Delta = [Y \cup f[Y]]_D \), critical domain.

Now cook up \(\langle E', D' \rangle \).

- If \(x \not\in \Delta \) then no extension: \([x]_{D'} = [x]_D \) and \([x]_{E'} = [x]_E \).

- If \(x \in Y \) then \([x]_{D'} = [x]_D \cup [f(x)]_D \), \([x]_{E'} = [x]_E \cup [f(x)]_E \), and let the other \(E' \)-class within \([x]_{D'} \) be \([x]_{D'} \setminus [x]_{E'} \).
Lemma 2

Let $\langle D, E \rangle$ be a DBP, and $X \subseteq 2^\omega$ a perfect set. Then there exist:

- A perfect set $Y \subseteq X$.
- A Borel $1 - 1$ map $f : Y \to Y$.
- A DBP $\langle D', E' \rangle$ that extends $\langle D, E \rangle$ and negatively contains $f \upharpoonright Y$, so that $f(y) \in [y]_{D'} \setminus [y]_{E'}$ for all $y \in Y$.
Lemma 2

Let \(\langle D, E \rangle \) be a DBP, and \(X \subseteq 2^\omega \) a perfect set. Then there exist:

- a perfect set \(Y \subseteq X \),
Lemma 2

Let \(\langle D, E \rangle \) be a DBP, and \(X \subseteq 2^\omega \) a perfect set. Then there exist:

- a perfect set \(Y \subseteq X \),
- a Borel 1 - 1 map \(f : Y \to Y \), and
Lemma 2

Let $\langle D, E \rangle$ be a DBP, and $X \subseteq 2^\omega$ a perfect set. Then there exist:

- a perfect set $Y \subseteq X$,
- a Borel 1–1 map $f : Y \rightarrow Y$, and
- a DBP $\langle D', E' \rangle$ that extends $\langle D, E \rangle$ and negatively contains $f \upharpoonright Y$, so that $f(y) \in [y]_{D'} \setminus [y]_{E'}$ for all $y \in Y$.
By Silver’s canonization theorem there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

By Silver’s canonization theorem there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

Let $f : Y \xrightarrow{\text{onto}} Y$ be a continuous bijection such that $y \neq f(y) = f^{-1}(y)$ for all $y \in Y$.

Proof of Lemma 2
By Silver’s canonization theorem there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

Let $f : Y \overset{\text{onto}}{\rightarrow} Y$ be a continuous bijection such that $y \neq f(y) = f^{-1}(y)$ for all $y \in Y$.

Extend $\langle D, E \rangle$ to $\langle D', E' \rangle$ so that
Proof of Lemma 2

By **Silver’s canonization theorem** there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

Let $f : Y \xrightarrow{\text{onto}} Y$ be a continuous bijection such that $y \neq f(y) = f^{-1}(y)$ for all $y \in Y$.

Extend $\langle D, E \rangle$ to $\langle D', E' \rangle$ so that

- if $y \notin [Y]_D$ then $[y]_{D'} = [y]_D$ and $[y]_{E'} = [y]_E$
By Silver’s canonization theorem there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

Let $f : Y \xrightarrow{\text{onto}} Y$ be a continuous bijection such that $y \neq f(y) = f^{-1}(y)$ for all $y \in Y$.

Extend $\langle D, E \rangle$ to $\langle D', E' \rangle$ so that

- if $y \not\in [Y]_D$ then $[y]_{D'} = [y]_D$ and $[y]_{E'} = [y]_E$
- if $y \in Y$ then: 1) $[y]_{D'} = [y]_D \cup [f(y)]_D$, 2) $[y]_{E'} = [y]_E \cup ([f(y)]_D \setminus [f(y)]_E)$. 3) the other E'-class within $[y]_{D'}$ be $([y]_D \setminus [y]_E) \cup [f(y)]_E$.
By \textbf{Silver’s canonization theorem} there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

Let $f : Y \rightarrow Y$ be a continuous bijection such that $y \neq f(y) = f^{-1}(y)$ for all $y \in Y$.

Extend $\langle D, E \rangle$ to $\langle D', E' \rangle$ so that

- if $y \notin [Y]_D$ then $[y]_{D'} = [y]_D$ and $[y]_{E'} = [y]_E$
- if $y \in Y$ then: 1) $[y]_{D'} = [y]_D \cup [f(y)]_D$
 2) $[y]_{E'} = [y]_E \cup ([f(y)]_D \setminus [f(y)]_E)$
By **Silver’s canonization theorem** there is a perfect $Y \subseteq X$ such that D, E are equalities on Y.

Let $f : Y \rightarrow Y$ be a continuous bijection such that $y \neq f(y) = f^{-1}(y)$ for all $y \in Y$.

Extend $\langle D, E \rangle$ to $\langle D', E' \rangle$ so that

- if $y \notin [Y]_D$ then $[y]_{D'} = [y]_D$ and $[y]_{E'} = [y]_E$
- if $y \in Y$ then:
 1) $[y]_{D'} = [y]_D \cup [f(y)]_D$,
 2) $[y]_{E'} = [y]_E \cup ([f(y)]_D \setminus [f(y)]_E)$,
 3) the other E'-class within $[y]_{D'}$ be $([y]_D \setminus [y]_E) \cup [f(y)]_E$
Using the two containment lemmas, we define, in L, an \leq-increasing sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha < \omega_1}$ of DBPs such that

A: if $X \subseteq 2^{\omega}$ is a perfect set and $f: X \to 2^{\omega}$ Borel and 1-1, then there exist Y a perfect set $\subseteq X$ and an ordinal $\alpha < \omega_1$ such that $\langle E_\alpha, D_\alpha \rangle$ contains $f|_Y$.

B: if $X \subseteq 2^{\omega}$ is a perfect set then there exist a perfect set $Y \subseteq X$, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f: Y \to Y$, such that $\langle E_\alpha, D_\alpha \rangle$ contains f negatively.

C: the sequence of pairs $\langle E_\alpha, D_\alpha \rangle$ is Δ^1_2, in the sense that there exists a Δ^1_2 sequence of codes for Borel sets E_α and D_α.

This item is not really easy.
Using the two containment lemmas, we define, in L, an \preceq-increasing sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha<\omega_1}$ of DBPs such that

A. if $X \subseteq 2^\omega$ is a perfect set and $f : X \to 2^\omega$ Borel and 1-1, then there exist: a perfect set $Y \subseteq X$ and an ordinal $\alpha < \omega_1$ such that $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$;
Using the two containment lemmas, we define, in \mathbf{L}, an \leq-increasing sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha<\omega_1}$ of DBPs such that

A. if $X \subseteq 2^\omega$ is a perfect set and $f : X \to 2^\omega$ Borel and 1-1, then there exist: a perfect set $Y \subseteq X$ and an ordinal $\alpha < \omega_1$ such that $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$;

B. if $X \subseteq 2^\omega$ is a perfect set then there exist: a perfect set $Y \subseteq X$, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$, such that $\langle E_\alpha, D_\alpha \rangle$ contains f negatively;
Using the two containment lemmas, we define, in \(L \), an \(\preceq \)-increasing sequence \(\langle E_\alpha, D_\alpha \rangle_{\alpha<\omega_1} \) of DBPs such that

A if \(X \subseteq 2^\omega \) is a perfect set and \(f : X \rightarrow 2^\omega \) Borel and 1-1, then there exist: a perfect set \(Y \subseteq X \) and an ordinal \(\alpha < \omega_1 \) such that \(\langle E_\alpha, D_\alpha \rangle \) contains \(f \upharpoonright Y \);

B if \(X \subseteq 2^\omega \) is a perfect set then there exist: a perfect set \(Y \subseteq X \), an ordinal \(\alpha < \omega_1 \), and a Borel 1-1 map \(f : Y \rightarrow Y \), such that \(\langle E_\alpha, D_\alpha \rangle \) contains \(f \) negatively;

C the sequence of pairs \(\langle E_\alpha, D_\alpha \rangle \) is \(\Delta^1_2 \), in the sense that there exists a \(\Delta^1_2 \) sequence of codes for Borel sets \(E_\alpha \) and \(D_\alpha \).
Using the two containment lemmas, we define, in L, an \preceq-increasing sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha < \omega_1}$ of DBPs such that

A if $X \subseteq 2^\omega$ is a perfect set and $f : X \to 2^\omega$ Borel and 1-1, then there exist: a perfect set $Y \subseteq X$ and an ordinal $\alpha < \omega_1$ such that $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$;

B if $X \subseteq 2^\omega$ is a perfect set then there exist: a perfect set $Y \subseteq X$, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$, such that $\langle E_\alpha, D_\alpha \rangle$ contains f negatively;

C the sequence of pairs $\langle E_\alpha, D_\alpha \rangle$ is Δ^1_2, in the sense that there exists a Δ^1_2 sequence of codes for Borel sets E_α and D_α.

This item is not really easy.
Using the two containment lemmas, we define, in L, an \preceq-increasing sequence $\langle E_\alpha, D_\alpha \rangle_{\alpha<\omega_1}$ of DBPs such that

A. if $X \subseteq 2^\omega$ is a perfect set and $f : X \to 2^\omega$ Borel and 1-1, then there exist: a perfect set $Y \subseteq X$ and an ordinal $\alpha < \omega_1$ such that $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$;

B. if $X \subseteq 2^\omega$ is a perfect set then there exist: a perfect set $Y \subseteq X$, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$, such that $\langle E_\alpha, D_\alpha \rangle$ contains f negatively;

C. the sequence of pairs $\langle E_\alpha, D_\alpha \rangle$ is Δ^1_2, in the sense that there exists a Δ^1_2 sequence of codes for Borel sets E_α and D_α.

This item is not really easy.
Definition (Solovay’s equivalence relations)

Let $E = \bigcup_{\alpha < \omega_1} E_{\alpha}$ and $D = \bigcup_{\alpha < \omega_1} D_{\alpha}$. This makes sense in any ω_1-preserving extension of L.

Theorem (implies Solovay’s partition theorem)

Let $a_0 \in 2^{\omega}$ be Sacks generic over L. It is true in $L[a_0]$ that

1. E and D are equivalence relations and E is a subrelation of D;
2. all reals $x, y \in 2^{\omega} \setminus L$ are D-equivalent;
3. there are at most two E-classes intersecting $2^{\omega} \setminus L$—say A, B;
4. the sets A, B are not OD, and we have $A \cup B = 2^{\omega} \setminus L$;
5. $E|_{2^{\omega} \setminus L}$ is lighface Π^1_2.

Vladimir Kanovei (IITP Moscow)
Definition (Solovay’s equivalence relations)

Let $E = \bigcup_{\alpha < \omega_1} E_\alpha$ and $D = \bigcup_{\alpha < \omega_1} D_\alpha$.

This makes sense in any ω_1-preserving extension of L.
Definition (Solovay’s equivalence relations)

Let \(E = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(D = \bigcup_{\alpha < \omega_1} D_\alpha \).

This makes sense in any \(\omega_1 \)-preserving extension of \(L \).

Theorem (implies Solovay’s partition theorem)

Let \(a_0 \in 2^\omega \) be Sacks generic over \(L \). It is true in \(L[a_0] \) that
Definition (Solovay’s equivalence relations)

Let \(E = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(D = \bigcup_{\alpha < \omega_1} D_\alpha \).

This makes sense in any \(\omega_1 \)-preserving extension of \(L \).

Theorem (implies Solovay’s partition theorem)

Let \(a_0 \in 2^\omega \) be Sacks generic over \(L \). It is true in \(L[a_0] \) that

1. \(E \) and \(D \) are equivalence relations and \(E \) is a subrelation of \(D \);
Definition (Solovay’s equivalence relations)

Let \(E = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(D = \bigcup_{\alpha < \omega_1} D_\alpha \).

This makes sense in any \(\omega_1 \)-preserving extension of \(L \).

Theorem (implies Solovay’s partition theorem)

Let \(a_0 \in 2^\omega \) be Sacks generic over \(L \). It is true in \(L[a_0] \) that

1. \(E \) and \(D \) are equivalence relations and \(E \) is a subrelation of \(D \);
2. all reals \(x, y \in 2^\omega \setminus L \) are \(D \)-equivalent;
Definition (Solovay’s equivalence relations)

Let $E = \bigcup_{\alpha < \omega_1} E_\alpha$ and $D = \bigcup_{\alpha < \omega_1} D_\alpha$.

This makes sense in any ω_1-preserving extension of L.

Theorem (implies Solovay’s partition theorem)

Let $a_0 \in 2^\omega$ be Sacks generic over L. It is true in $L[a_0]$ that

1. E and D are equivalence relations and E is a subrelation of D;
2. all reals $x, y \in 2^\omega \setminus L$ are D-equivalent;
3. there are at most two E-classes intersecting $2^\omega \setminus L$ – say A, B;
Definition (Solovay’s equivalence relations)

Let \(E = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(D = \bigcup_{\alpha < \omega_1} D_\alpha \).

This makes sense in any \(\omega_1 \)-preserving extension of \(L \).

Theorem (implies Solovay’s partition theorem)

Let \(a_0 \in 2^\omega \) be Sacks generic over \(L \). It is true in \(L[a_0] \) that

1. \(E \) and \(D \) are equivalence relations and \(E \) is a subrelation of \(D \);
2. all reals \(x, y \in 2^\omega \setminus L \) are \(D \)-equivalent;
3. there are at most two \(E \)-classes intersecting \(2^\omega \setminus L \) – say \(A, B \);
4. the sets \(A, B \) are not \(\text{OD} \), and we have \(A \cup B = 2^\omega \setminus L \).
Definition (Solovay’s equivalence relations)

Let \(E = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(D = \bigcup_{\alpha < \omega_1} D_\alpha \).

This makes sense in any \(\omega_1 \)-preserving extension of \(L \).

Theorem (implies Solovay’s partition theorem)

Let \(a_0 \in 2^\omega \) be Sacks generic over \(L \). It is true in \(L[a_0] \) that

1. \(E \) and \(D \) are equivalence relations and \(E \) is a subrelation of \(D \);
2. all reals \(x, y \in 2^\omega \setminus L \) are \(D \)-equivalent;
3. there are at most two \(E \)-classes intersecting \(2^\omega \setminus L \) – say \(A, B \);
4. the sets \(A, B \) are not \(\text{OD} \), and we have \(A \cup B = 2^\omega \setminus L \);
5. \(E \upharpoonright (2^\omega \setminus L) \) is lighface \(\Pi^1_2 \).
Definition (Solovay’s equivalence relations)

Let \(E = \bigcup_{\alpha < \omega_1} E_\alpha \) and \(D = \bigcup_{\alpha < \omega_1} D_\alpha \).

This makes sense in any \(\omega_1 \)-preserving extension of \(L \).

Theorem (implies Solovay’s partition theorem)

Let \(a_0 \in 2^\omega \) be Sacks generic over \(L \). It is true in \(L[a_0] \) that

1. \(E \) and \(D \) are equivalence relations and \(E \) is a subrelation of \(D \);
2. all reals \(x, y \in 2^\omega \setminus L \) are \(D \)-equivalent;
3. there are at most two \(E \)-classes intersecting \(2^\omega \setminus L \) – say \(A, B \);
4. the sets \(A, B \) are not \(OD \), and we have \(A \cup B = 2^\omega \setminus L \);
5. \(E \upharpoonright (2^\omega \setminus L) \) is lighface \(\Pi^1_2 \).
Proof By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

Let $x \in 2^{\omega} \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^{\omega}$ coded in L and a continuous 1-1 $f : X \to 2^{\omega}$ coded in L such that $a_0 \in X$ and $x = f(a_0)$.

By A and since a_0 is Sacks, there exist $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that still $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$, meaning that $a_0 D_\alpha f(a_0)$.

Thus $a_0 D_\alpha x$, as required.

Remark The following is true in $L[a_0]$ as well: if $x \in 2^{\omega} \cap L$ and $y \in 2^{\omega} \setminus L$ then $x \not\sim D y$.

The construction can be modified to ensure that all reals in $2^{\omega} \cap L$ are D-equivalent and $2^{\omega} \cap L$ has exactly two E-classes (similar to $2^{\omega} \setminus L$).
1 By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

2 Let $x \in 2^{\omega} \setminus L \in L[a]$. There is a perfect set $X \subseteq 2^{\omega}$ coded in L and a continuous 1-1 $f: X \to 2^{\omega}$ coded in L such that $a_0 \in X$ and $x = f(a_0)$.

By A and since a_0 is Sacks, there exist $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that still $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f|Y$, meaning that $a_0 D_\alpha f(a_0)$.

Thus $a_0 D_x$, as required.

Remark The following is true in $L[a]$ as well: if $x \in 2^{\omega} \cap L$ and $y \in 2^{\omega} \setminus L$ then $x \not\sim D y$.

The construction can be modified to ensure that all reals in $2^{\omega} \cap L$ are D-equivalent and $2^{\omega} \cap L$ has exactly two E-classes (similar to $2^{\omega} \setminus L$).
1 By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

2 Let $x \in 2^\omega \setminus L$ in $L[a_0]$.

Remark: The following is true in $L[a_0]$ as well: if $x \in 2^\omega \cap L$ and $y \in 2^\omega \setminus L$ then $x \not\sim D y$.

The construction can be modified to ensure that all reals in $2^\omega \cap L$ are D-equivalent and $2^\omega \cap L$ has exactly two E-classes (similar to $2^\omega \setminus L$).
1 By Shoenfield, because E_α, D_α are Borel equiv. relations in \mathcal{L}.

2 Let $x \in 2^\omega \setminus \mathcal{L}$ in $\mathcal{L}[a_0]$.
There is a perfect set $X \subseteq 2^\omega$ coded in \mathcal{L} and a continuous 1-1 $f : X \to 2^\omega$ coded in \mathcal{L} such that $a_0 \in X$ and $x = f(a_0)$.

Remark The following is true in $\mathcal{L}[a_0]$ as well: if $x \in 2^\omega \cap \mathcal{L}$ and $y \in 2^\omega \setminus \mathcal{L}$ then $x \not\sim_D y$.

The construction can be modified to ensure that all reals in $2^\omega \cap \mathcal{L}$ are D-equivalent and $2^\omega \cap \mathcal{L}$ has exactly two E-classes (similar to $2^\omega \setminus \mathcal{L}$).
1 By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

2 Let $x \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and a continuous 1-1 $f : X \rightarrow 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0)$.

By A and since a_0 is Sacks, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that still $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$, meaning that $a_0 \ D_\alpha \ f(a_0)$.
1 By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

2 Let $x \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and a continuous 1-1 $f : X \to 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0)$.

By A and since a_0 is Sacks, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that still $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$, meaning that $a_0 D_\alpha f(a_0)$.

Thus $a_0 D x$, as required.
1. By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

2. Let $x \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and a continuous 1-1 $f : X \rightarrow 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0)$. By A and since a_0 is Sacks, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that still $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$, meaning that $a_0 D_\alpha f(a_0)$. Thus $a_0 D x$, as required.

Remark

The following is true in $L[a_0]$ as well: if $x \in 2^\omega \cap L$ and $y \in 2^\omega \setminus L$ then $x \not\sqsubseteq y$.
1 By Shoenfield, because E_α, D_α are Borel equiv. relations in L.

2 Let $x \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and a continuous 1-1 $f : X \to 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0)$. By A and since a_0 is Sacks, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that still $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$, meaning that $a_0 D_\alpha f(a_0)$. Thus $a_0 D x$, as required.

Remark

The following is true in $L[a_0]$ as well: if $x \in 2^\omega \cap L$ and $y \in 2^\omega \setminus L$ then $x \not\in y$. The construction can be modified to ensure that all reals in $2^\omega \cap L$ are D-equivalent and $2^\omega \cap L$ has exactly two E-classes (similar to $2^\omega \setminus L$).
3 Let $x, y, z \in 2^\omega \setminus L$ in $L[a_0]$.
Let $x, y, z \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and continuous 1-1 maps $f, g, h : X \to 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0)$, $y = g(a_0)$, $z = h(a_0)$.
Let $x, y, z \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and continuous 1-1 maps $f, g, h : X \to 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0), y = g(a_0), z = h(a_0)$. By A, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \restriction Y, g \restriction Y, h \restriction Y$.
Let $x, y, z \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and continuous 1-1 maps $f, g, h : X \to 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0)$, $y = g(a_0)$, $z = h(a_0)$.

By **A**, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$, $g \upharpoonright Y$, $h \upharpoonright Y$. Thus

$$\forall a \in X \left(a D_\alpha f(a) D_\alpha g(a) D_\alpha h(a) \right)$$

holds in L,
Let $x, y, z \in 2^\omega \setminus L$ in $L[a_0]$. There is a perfect set $X \subseteq 2^\omega$ coded in L and continuous 1-1 maps $f, g, h : X \to 2^\omega$ coded in L such that $a_0 \in X$ and $x = f(a_0), y = g(a_0), z = h(a_0)$. By A, there exist: a perfect $Y \subseteq X$ coded in L and some $\alpha < \omega_1$ such that $a_0 \in Y$ and $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y, g \upharpoonright Y, h \upharpoonright Y$. Thus
\[
\forall a \in X \left(a \ D_\alpha \ f(a) \ D_\alpha \ g(a) \ D_\alpha \ h(a) \right)
\]
holds in L, hence, as $\langle E_\alpha, D_\alpha \rangle$ is a DBP,
\[
\forall a \in X \left(f(a) \ E_\alpha \ g(a) \lor f(a) \ E_\alpha \ h(a) \lor g(a) \ E_\alpha \ h(a) \right)
\]
in L.
3 Let \(x, y, z \in 2^\omega \setminus \mathbb{L} \) in \(\mathbb{L}[a_0] \). There is a perfect set \(X \subseteq 2^\omega \) coded in \(\mathbb{L} \) and continuous 1-1 maps \(f, g, h : X \to 2^\omega \) coded in \(\mathbb{L} \) such that \(a_0 \in X \) and \(x = f(a_0), \ y = g(a_0), \ z = h(a_0) \).

By A, there exist: a perfect \(Y \subseteq X \) coded in \(\mathbb{L} \) and some \(\alpha < \omega_1 \) such that \(a_0 \in Y \) and \(\langle E_\alpha, D_\alpha \rangle \) contains \(f \upharpoonright Y, \ g \upharpoonright Y, \ h \upharpoonright Y \). Thus

\[
\forall a \in X (a \ D_\alpha f(a) \ D_\alpha g(a) \ D_\alpha h(a))
\]

holds in \(\mathbb{L} \), hence, as \(\langle E_\alpha, D_\alpha \rangle \) is a DBP,

\[
\forall a \in X (f(a) \ E_\alpha g(a) \lor f(a) \ E_\alpha h(a) \lor g(a) \ E_\alpha h(a))
\]

in \(\mathbb{L} \). By Shoenfield this is absolute, hence

\[x \ E_\alpha y \lor x \ E_\alpha z \lor y \ E_\alpha z\]

as required.
Suppose to the contrary that A, B are OD. Let $a_0 \in A$. But $A \setminus \mathcal{L}$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^{\omega}$ coded in \mathcal{L}, such that $a_0 \in X \setminus \mathcal{L} \subseteq A$ in \mathcal{L}. By B, there exist: a perfect set $Y \subseteq X$ coded in \mathcal{L}, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$ coded in \mathcal{L}, such that $a_0 \in Y$, $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$ negatively. Thus the reals a_0 and $x = f(a_0)$ in $Y \setminus \mathcal{L} \subseteq A$ satisfy $a_0 D_\alpha x$, but $a_0 \not\in E_\alpha x$. It follows that $a_0 \not\in E x$, which contradicts the fact that a_0, x belong to the same E-class. Thus A, B is not OD in $\mathcal{L}[a_0]$. Therefore $A \cup B \subseteq 2^{\omega} \setminus \mathcal{L}$ and A, B are E-classes inside $2^{\omega} \setminus \mathcal{L}$. But already asserts that there are ≤ 2 E-classes touching $2^{\omega} \setminus \mathcal{L}$, hence we have $2^{\omega} \setminus \mathcal{L} = A \cup B$.

Vladimir Kanovei (IITP Moscow)
4. Suppose to the contrary that A, B are OD. Let $a_0 \in A$.

But $A \setminus L$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^\omega$, coded in L, such that $a_0 \in X \setminus L \subseteq A$ in $L[a_0]$.
Suppose to the contrary that A, B are OD. Let $a_0 \in A$.

But $A \setminus L$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^\omega$, coded in L, such that $a_0 \in X \setminus L \subseteq A$ in $L[a_0]$.

By B, there exist: a perfect set $Y \subseteq X$ coded in L, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$ coded in L, such that $a_0 \in Y$, $\langle E_\alpha, D_\alpha \rangle$ contains $f|_Y$ negatively.
4 Suppose to the contrary that A, B are OD. Let $a_0 \in A$.

But $A \setminus L$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^\omega$, coded in L, such that $a_0 \in X \setminus L \subseteq A$ in $L[a_0]$.

By B, there exist: a perfect set $Y \subseteq X$ coded in L, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$ coded in L, such that $a_0 \in Y$, $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$ negatively.

Thus the reals a_0 and $x = f(a_0)$ in $Y \setminus L \subseteq A$ satisfy $a_0 \mathrel{D_\alpha} x$, but $a_0 \not\mathrel{E_\alpha} x$.
4 Suppose to the contrary that A, B are OD. Let $a_0 \in A$.

But $A \setminus L$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^\omega$, coded in L, such that $a_0 \in X \setminus L \subseteq A$ in $L[a_0]$.

By B, there exist: a perfect set $Y \subseteq X$ coded in L, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$ coded in L, such that $a_0 \in Y$, $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$ negatively.

Thus the reals a_0 and $x = f(a_0)$ in $Y \setminus L \subseteq A$ satisfy $a_0 D_\alpha x$, but $a_0 \not E_\alpha x$. It follows that $a_0 \not E x$, which contradicts the fact that a_0, x belong to the same E-class.

Thus A, B is not OD in $L[a_0]$.
Suppose to the contrary that A, B are OD. Let $a_0 \in A$.

But $A \setminus L$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^\omega$, coded in L, such that $a_0 \in X \setminus L \subseteq A$ in $L[a_0]$.

By B, there exist: a perfect set $Y \subseteq X$ coded in L, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \to Y$ coded in L, such that $a_0 \in Y$, $\langle E_\alpha, D_\alpha \rangle$ contains $f \upharpoonright Y$ negatively.

Thus the reals a_0 and $x = f(a_0)$ in $Y \setminus L \subseteq A$ satisfy $a_0 D_\alpha x$, but $a_0 \not\in E_\alpha x$. It follows that $a_0 \not\in E x$, which contradicts the fact that a_0, x belong to the same E-class.

Thus A, B is not OD in $L[a_0]$.

Therefore $A \cup B \subseteq 2^\omega \setminus L$ and A, B are E-classes inside $2^\omega \setminus L$.
Suppose to the contrary that A, B are OD. Let $a_0 \in A$.

But $A \setminus L$ consists of Sacks reals. Hence there is a perfect set $X \subseteq 2^\omega$, coded in L, such that $a_0 \in X \setminus L \subseteq A$ in $L[a_0]$.

By B, there exist: a perfect set $Y \subseteq X$ coded in L, an ordinal $\alpha < \omega_1$, and a Borel 1-1 map $f : Y \rightarrow Y$ coded in L, such that $a_0 \in Y$, $\langle E_\alpha, D_\alpha \rangle$ contains $f \restriction Y$ negatively.

Thus the reals a_0 and $x = f(a_0)$ in $Y \setminus L \subseteq A$ satisfy $a_0 D_\alpha x$, but $a_0 \not E_\alpha x$. It follows that $a_0 \not E x$, which contradicts the fact that a_0, x belong to the same E-class.

Thus A, B is not OD in $L[a_0]$.

Therefore $A \cup B \subseteq 2^\omega \setminus L$ and A, B are E-classes inside $2^\omega \setminus L$.

But 3 already asserts that there are ≤ 2 E-classes touching $2^\omega \setminus L$, hence we have $2^\omega \setminus L = A \cup B$.
To prove 5 make use of C.
The speaker thanks *everybody* for patience
M. Golshani, V. Kanovei, and V. Lyubetsky.
A Groszek – Laver pair of undistinguishable E_0 classes.
FGH G. Fuchs, V. Gitman, and J. D. Hamkins.
Ehrenfeucht’s lemma in set theory.

GH M. J. Groszek and J. D. Hamkins.
The implicitly constructible universe.
KSZ V. Kanovei, M. Sabok, and J Zapletal.
Canonical Ramsey theory on Polish spaces.
EK Ali Enayat, Vladimir Kanovei.
An unpublished theorem of Solovay, on OD partitions of reals into two non-OD parts, revisited.
DOI: 10.1142/S0219061321500148