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Abstract. The class of ergodic, invariant probability Borel mea-
sure for the shift action of a countable group is a Gδ set in the com-
pact, metrizable space of probability Borel measures. We study in
this paper the descriptive complexity of the class of ergodic, quasi-
invariant probability Borel measures and show that for any infinite
countable group Γ it is Π0

3-hard, for the group Z it is Π0
3-complete,

while for the free group F∞ with infinite, countably many gener-
ators it is Π0

α-complete, for some ordinal α with 3 ≤ α ≤ ω + 2.
The exact value of this ordinal is unknown.

1. Introduction

For any Polish space X, let P (X) be the Polish space of probability
Borel measures on X with the usual topology (see, e.g., [K, 17.E]). It
is compact, metrizable, if X is compact, metrizable. Any f : X → Y
induces the map f∗ : P (X)→ P (Y ), defined by f∗(µ)(B) = µ(f−1(B)).

If E is an equivalence relation onX, a measure µ ∈ P (X) is ergodic
for E if for any Borel E-invariant set A ⊆ X, µ(A) ∈ {0, 1}. We denote
by ERGE the set of such measures. Similarly if a : Γ × X → X is an
action of a group Γ on X, a measure µ is ergodic for a if for any
invariant under a Borel set A, we have µ(A) ∈ {0, 1}. We denote again
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by ERGa the set of such measures. Clearly ERGa = ERGEa , where Ea
is the equivalence relation induced by (the orbits of) the action a.

Consider now a continuous action a of a countable (discrete) group
Γ on a compact, metrizable space K. If a is understood from the
context, we write γ · x instead of a(γ, x). We also let γa(x) = a(γ, x).
It is a standard fact that the set INVa of invariant measures for a is
closed in P (K) and the set EINVa of invariant, ergodic measures for a
is Gδ in P (K) (see, e.g., [G, Theorem 4.2]).

Recall that µ ∈ P (K) is called quasi-invariant for the action a if
for any γ ∈ Γ, γ · µ ∼ µ, where ∼ denotes measure equivalence and
γ ·µ = (γa)∗(µ). Denote by QINVa the set of quasi-invariant measures
for a and by EQINVa the subset of ergodic, quasi-invariant measures
for a. Since the relation ∼ of measure equivalence is Π0

3 in P (K)2, it
follows that QINVa is Π0

3 in P (K). From a (more general) result of
Ditzen in [D], it follows that ERGa is Borel and, again from a (more
general) result in Louveau-Mokobodzki [LM, page 4823], this can be
improved to ERGa ∈ Π0

ω+2. Thus EQINVa = ERGa ∩ QINVa is also

Π0
ω+2 in P (K).

In this paper we are interested in the Borel complexity of the sets
QINVa and EQINVa. To avoid technical complications involving the
topology of K, we will consider here the case where K is 0-dimensional
and thus can be viewed as a closed subspace of the Cantor space C = 2N.
Under these circumstances, the action a of Γ on K can be topologically
embedded, via the map f(x) = (γ−1 · x)γ, into the shift action sΓ of
Γ on CΓ. Therefore QINVa and EQINVa are Wadge reducible, via the
continuous map µ 7→ f∗(µ), to QINVsΓ

and EQINVsΓ
, resp. Recall

that if A ⊆ X,B ⊆ Y , then A is Wadge reducible to B if there
is a continuous function f : X → Y such that A = f−1(B). In this
case we put A ≤W B. We will thus focus our attention on the study of
the Borel complexity of the quasi-invariant and ergodic, quasi-invariant
measures for the shift action. For convenience we write

QINVΓ = QINVsΓ
,ERGΓ = ERGsΓ ,EQINVΓ = EQINVsΓ

.

We prove below the following results, where for a class Φ of sets in
Polish spaces, a set A ⊆ X, X a Polish space, is called Φ-hard if for
any B ⊆ Y , Y a 0-dimensional Polish space, with B ∈ Φ, we have
B ≤W A. If in addition A ∈ Φ, then A is called Φ-complete.

Theorem 1. For any infinite, countable group Γ, QINVΓ is Π0
3-

complete and ERGΓ,EQINVΓ are Π0
3-hard.

Theorem 2. The set EQINVZ is Π0
3-complete.
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Theorem 3. Let F∞ be the group with infinite, countably many
generators. Then there is a countable ordinal α∞ ≥ 3 such that the set
EQINVF∞ is Π0

α∞-complete.

Thus 3 ≤ α∞ ≤ ω + 2.

Problem 4. Calculate α∞.

We note that from Theorem 3 it follows that EQINVΓ ∈ Π0
α∞ , for

any countable group Γ.

Remark 5. The proof of Theorem 3 in Section 4 below also shows that
for any countable group Γ that can be mapped onto the direct sum of
infinite, countably many copies of itself, there is a countable ordinal
αΓ (thus 3 ≤ αΓ ≤ ω + 2) such that EQINVΓ is Π0

αΓ
-complete.

Acknowledgment. Research partially supported by NSF Grant DMS-
1464475.

2. Proof of Theorem 1

We first note the following standard fact.

Lemma 2.1. For any continuous action a of a countable group Γ on
a compact, metrizable space K, ERGa ≤W EQINVa.

Proof. Let Γ = {γn : n ∈ N}. The map µ ∈ P (K) 7→
∑

n 2−(n+1)γn·
µ ∈ P (K) is a continuous reduction of ERGa to EQINVa. �

Thus to complete the proof of Theorem 1, it is enough to show that
QINVΓ is Π0

3-complete and that ERGΓ is Π0
3-hard.

(A) QINVΓ is Π0
3-complete.

Let X be a perfect Polish space and Γ an infinite, countable group,
which acts freely and continuously on X. Put

S = {(xn) ∈ XN : {xn : n ∈ N} is Γ-invariant)

= {(xn) ∈ XN : ∀n∀γ∃m(γ · xn = xm)}

Proposition 2.2. S is not Gδ.

Proof. First notice that S is dense: Given U0, . . . , Uk−1 non-∅
open in X consider U0×· · ·×Uk−1×XN. We will show that it intersects
S. Pick x0

i ∈ Vi, i < k. Then clearly there are x0
k, x

0
k+1, . . . such that

(x0
n) ∈ S.

So if S is Gδ, it is comeager. We will show that there is a dense Gδ

set G such that G ∩ S = ∅, a contradiction.
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Let γ 6= 1, γ ∈ Γ and put

G = {(xn) : ∀m(γ · x0 6= xm)}.
Clearly G ∩ S = ∅. Now

G =
⋂
m

Gm, where

Gm = {(xn) : γ · x0 6= xm}.
Clearly Gm is dense, open, so G is comeager. �

Let now K be perfect, compact, metrizable and let a be a free,
continuous action of Γ on K.

Proposition 2.3. QINVa is not Gδ in P (K).

Proof. It is enough to find a continuous function

F : KN → P (K)

such that F−1(QINVa) = S, where S is as above for (K,Γ).
Put

F ((xn)) =
∞∑
n=0

1

2n+1
δxn ,

where δx is the Dirac measure at x ∈ K.

Claim. F is continuous.

Proof. We need to check that if f ∈ C(K), and (xin)→ (xn) in KN,
then F ((xin))(f) =

∑∞
n=0

1
2n+1f(xin) −→ F ((xn))(f) =

∑∞
n=0

1
2n+1f(xn),

which is clear as f(xin) −→ f(xn),∀n.

Claim. F−1(QINVΓ) = S.

Proof. If (xn) ∈ S, then clearly γ · (F (xn)) ∼ F ((xn)), ∀γ ∈ Γ.
Conversely assume (xn) 6∈ S. Let then n, γ be such that ∀m(γ · xn 6=
xm). Then γ · F ((xn)) 6∼ F ((xn)). �

Thus we have shown:

Proposition 2.4. Let a be a continuous and free action of an infinite
countable group Γ on the perfect, compact metrizable space K. Then
QINVa is not Gδ in P (K).

Let now Q = {x ∈ C : x(n) = 0 for all but finitely many n}. Then
Q is Fσ in the Cantor space C and for any Polish space X and Borel
set A ⊆ X, if A is not Gδ, then Q ≤W A (see [K, 24.20 and 22.13]).
Thus we have:
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Corollary 2.5. Let a be a continuous and free action of an infinite,
countable group Γ on the perfect, compact metrizable space K Then
there is a continuous function f : C → P (K) with f−1(QINVa) = Q.

Consider now the set QN ⊆ CN. It is known that QN is a Π0
3-

complete set (see [K, page 179] where this set is denoted by P3).
Let now K = CΓ with the shift action. By a result of Gao-Jackson-
Seward [GJS, 3.7], there are infinitely many, pairwise disjoint, invari-
ant compact subsets Kn of K on which Γ acts minimally and freely.
Note that each Kn is perfect. By the preceding corollary, there is a
continuous function fn : C → P (Kn) such that f−1

n (QINVan) = Q,
where an is the restriction of the shift action to Kn. Define now
f : CN → P (K) by f((xn)) =

∑
n

1
2n+1fn(xn). Then f is continuous

and f−1(QINVΓ) = QN, so QINVΓ is Π0
3-complete.

(B) ERGΓ is Π0
3-hard.

This follows from the following more general result, where a Borel
equivalence relation E on a Polish space X is smooth if there is a Borel
map f : X → Y , Y a Polish space, such that xEy ⇐⇒ f(x) = f(y).

Theorem 2.6. Let E be a non-smooth, Borel equivalence relation
on a Polish space X. Then ERGE is Π0

3-hard.

Proof. Let Ek
0 be the equivalence relation of kN given by

(xn)Ek
0 (yn) ⇐⇒ ∃n∀m ≥ n(xm = ym).

Then by [HKL], E3
0 can be continuously embedded, say by the function

f : 3N → X, into E. The function f∗ from P (3N) to P (X) is continuous
and µ is ergodic for E3

0 iff f∗(µ) is ergodic for E. It is thus enough to
prove this result for E = E3

0 .
Consider the Π0

3-complete set P3 = QN ⊆ CN, as in the paragraph
following Corollary 2.5. We will define a continuous function f : CN ×
C → 3N as follows:

Fix a bijection 〈·, ·〉 : N2 → N. Define first a function f̄ by:

f̄((ak), x)(〈n,m〉) = x(n+m), if an(m) = 0;x|[n, n+m], if an(m) = 1.

Let then f((ak), x) = y, where letting yn(m) = y(〈n,m〉), yn is equal
to:

2 f̄((ak), x)(〈n, 0〉) 2 f̄((ak), x)(〈n, 1〉) 2 · · · 2 f̄((ak), x)(〈n,m〉) 2 · · · ,
which is the concatenation of 2 followed by f̄((ak), x)(〈n, 0〉) followed
by 2 followed by f̄((ak), x)(〈n, 1〉) . . .

Since y(〈n,m〉) depends only on an(l), for l ≤ m, and x(n), . . . , x(n+
m), it is clear that f is continuous.
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It is also clear that for each fixed (ak), the section f(ak)(x) =
f((ak), x) is injective. For each (ak) ∈ CN let now

µ((ak)) = (f(ak))∗(λ),

where λ is the usual product measure on C. The function µ : CN →
P (3N) is continuous, so its is enough to show that

(ak) ∈ P3 ⇐⇒ µ((ak)) ∈ ERGE3
0
.

(A) Let (ak) ∈ P3. We claim then that xE2
0y =⇒ f(ak)(x)E3

0f(ak)(y).
Indeed, if xE0y, say x(k) = y(k) for all k ≥ n0, then for n ≥ n0, clearly
f(ak)(x)(〈n,m〉) = f(ak)(y)(〈n,m〉),∀m. Let also m be large enough so
that an(m) = 0, for all n < n0 and all m ≥ m0. Then for some k0

and all m ≥ k0, n < n0, we have f(ak)(x)(〈n,m〉) = f(ak)(y)(〈n,m〉), so
f(ak)(x)E3

0f(ak)(y).
Thus if A ⊆ 3N is Borel, E3

0 -invariant, then f−1
(ak)(A) is Borel E2

0 -

invariant, so, since λ is ergodic for E2
0 , it has λ-measure 0 or 1, and

thus A has µ((ak))-measure 0 or 1. So µ((ak)) ∈ ERGE3
0
.

(B) Let (ak) /∈ P3. Fix then n0 and 1 < m0 < m1 < m2 . . . be such
that an0(mi) = 1,∀i. Fix also a tree T ⊆ 2<N such that 0 < λ([T ]) < 1.
Put

B =
⋃
s∈2n0

Ns ? [T ],

where for s ∈ 2n0 :

Ns ? [T ] = {a ∈ C : s ⊆ a & (an0 , an0+1, . . . ) ∈ [T ]}.
Then λ(B) = λ([T ]) ∈ (0, 1). Put f(ak)(B) = C and A = [C]E3

0
. Then

A is Borel, E3
0 -invariant and we will show that f−1

(ak)(A) = B, so that

µ((ak))(A) ∈ (0, 1), and thus µ((ak)) is not ergodic for E3
0 , completing

the proof.
Let f(ak)(x) ∈ A and choose y ∈ B such that f(ak)(x)E3

0f(ak)(y).
Then, in particular, if f(ak)(x) = (xn), f(ak)(y) = yn, we have xn0E

3
0yn0 .

Now xn0 = 2 s0 2 s1 . . . , yn0 = 2 t0 2 t1 . . . , where for each i, si, ti
are binary sequences of the same length. Let then k be such that for
all i ≥ k, si = ti. If mj ≥ k, then tmj

= (yn0 , . . . , yn0+mj
) and so

smj
= tmj

∈ T . Since also smj
= (xn0 , . . . , xn0+mj

), we have that
(xn0 , xn0+1, . . . ) ∈ [T ], i.e., x ∈ B. �

3. Proof of Theorem 2

Ditzen [D, page 47] shows that EQINVZ is Π0
3 and thus by Theo-

rem 1 it is Π0
3-complete.
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4. Proof of Theorem 3

Theorem 3 will follow from the next proposition:

Proposition 4.1. Let X be a Polish space and let A ⊆ X. If A ≤W
ERGF∞, then AN(⊆ XN) ≤W ERGF∞.

Proof. Recall that for any countable Borel equivalence relation
E, we denote by ERGE the set of probability Borel measures that are
ergodic for E.

Lemma 4.2. Let En be a countable Borel equivalence relation in the
Polish space Xn and let µn be a probability Borel measure on Xn. Let
E∞ be the following equivalence relation on XN:

(xn)E∞(yn) ⇐⇒ ∀n(xnEnyn) & ∃m∀n ≥ m(xn = yn).

Then ∏
n

µn ∈ ERGE∞ ⇐⇒ ∀n(µn ∈ ERGEn).

Proof. =⇒ : Put µ =
∏

n µn. Let A ⊆ Xn be Borel and En-
invariant. Let B = X0 × · · ·Xn−1 × A×Xn+1 × · · · . Then B is Borel
and E∞-invariant, so µn(A) = µ(B) ∈ {0, 1}.
⇐=: Assume that each µn is ergodic for En. Let A ⊆

∏
nXn be

Borel and E∞-invariant. For each Borel set B ⊆
∏

nXn, let ν(B) =
µ(A ∩ B). If we can show that for each Borel cylinder B ⊆

∏
nXn,

ν(B) = µ(A)µ(B), then since the class of all Borel sets B with the prop-
erty that ν(B) = µ(A)µ(B) is closed under complements and countable
disjoint unions, by the π − λ Theorem (see, e.g., [K, 10.1, iii)]) it con-
tains all Borel sets, and in particular A, so ν(A) = µ(A) = µ(A)2, thus
µ(A) ∈ {0, 1}.

Let then B = D×
∏

i≥nXi be a Borel cylinder, where D ⊆
∏

i<nXi.
For y ∈

∏
i≥nXi, let Ay = {(xi)i<n ∈

∏
i<nXi : ((xi)i<n, y)) ∈ A}.

Then Ay is
∏

i<nEi-invariant.

Claim.
∏

i<n µi ∈ ERG∏
i<n Ei

.

Proof. It is enough to consider the case n = 2, so let A ⊆ X0 ×X1

be Borel and (E0 × E1)-invariant. Note that for x0 ∈ X0 the section
Ax0 ⊆ X1 is E1 invariant, so µ1(Ax0) ∈ {0, 1}. Let Pi = {x0 : µ1(Ax0) =
i}, for i ∈ {0, 1}. Then each Pi is E0-invariant. If µ0(P0) = 0, then
µ0(P1) = 1, so (µ0× µ1)(A) = 1. If µ0(P0) = 1, then (µ0× µ1)(A) = 1.

Thus Ay has
∏

i<n µi-measure 0 or 1. Let

C = {y ∈
∏
i≥n

Xi : (
∏
i<n

µi)(A
y) = 1}.
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Then µ(A) = (
∏

i≥n µi)(C). Now for y ∈ C, (
∏

i<n µi)(A
y ∩ D) =

(
∏

i<n µi)(D) and for y /∈ C, (
∏

i<n µi)(Ay ∩D) = 0, so

µ(A ∩B) = µ(A ∩ (D ×
∏
i≥n

Xi))

=

∫
(
∏
i<n

µi)(A
y ∩D)d(

∏
i≥n

µi)(y)

= (
∏
i<n

µi)(D) · (
∏
i≥n

µi)(C)

= µ(B)µ(A).

�

Let now E be the equivalence relation on CF∞ induced by the shift
action of F∞. We have to show that if A ≤W ERGE, then AN ≤W
ERGE. Let f : X → P (CF∞) be a continuous function witnessing that
A ≤W ERGE. Define f∞ : XN → P ((CF∞)N) by f∞((xn)) =

∏
n f(xn).

Then f∞ is continuous and if E∞ is as in Lemma 4.2 with En = E for
each n, then

f∞((xn)) ∈ ERGE∞ ⇐⇒ ∀n(f(xn) ∈ ERGE) ⇐⇒ (xn) ∈ AN.

So AN ≤W ERGE∞ .
Now consider the continuous action of

⊕
n F∞ on (CF∞)N given by

(γn) · (xn) = (γn · xn). The equivalence relation it induces is exactly
E∞. Mapping F∞ onto

⊕
n F∞, this gives a continuous action a of F∞

on (CF∞)N for which ERGa = ERGE∞ and thus AN ≤W ERGa. Noting
that (CF∞)N is homeomorphic to C, we can embed this action to the
shift action of F∞ on CF∞ and thus AN ≤W ERGF∞ . �

Using Proposition 4.1, we now complete the proof of Theorem 3 as
follows. Let α be least such that ERGF∞ ∈ Π0

α. By Theorem 1, α ≥ 3.

Claim. ERGF∞ is Π0
α-complete.

Proof. Let A = {B ⊆ Y : Y Polish, 0-dimensional, B ≤W ERGF∞}.
Then A is closed under countable intersections, since if Bn ∈ A, Bn ⊆
Y , there is a continuous function fn : Y → P (CF∞) such that Bn =
f−1
n (ERGF∞). Put X = P (CF∞), A = ERGF∞ and let f : Y → XN be

given by f(y)n = fn(y). Then f witnesses that
⋂
nBn ≤W AN ≤W A =

ERGF∞ , so
⋂
nBn ∈ A.

Let now B ∈ Π0
α, B ⊆ Y , Y Polish and 0-dimensional. Then

B =
⋂
nBn, where Bn ∈ Σ0

αn
, for some αn < α. By a result of Saint-

Raymond (see [K, 24.20 and 22.13]) Bn ≤W ERGF∞ , so B ≤W ERGF∞ .
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Now, as α ≥ 3, EQINVF∞ is in Π0
α. Also by Lemma 2.1, if B ∈ Π0

α,

then B ≤W ERGF∞ ≤W EQINVF∞ , so EQINVF∞ is Π0
α-complete.

Remark 4.3. Note that the only property of F∞ that we used in
the preceding proof is that it can be mapped onto the direct sum of
countably many copies of itself. It follows that Theorem 3 is valid as
well for any countable group Γ that has this property.
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