ON THE WEIL-ETALE TOPOS OF REGULAR ARITHMETIC SCHEMES

M. FLACH AND B. MORIN

ABSTRACT. We define and study a Weil-étale topos for any regular,
proper scheme X over Spec(Z) which has some of the properties sug-
gested by Lichtenbaum for such a topos. In particular, the cohomol-
ogy with R-coefficients has the expected relation to C(X,s) at s =0if
the Hasse-Weil L-functions L(h*(Xg), s) have the expected meromor-
phic continuation and functional equation. If X' has characteristic p
the cohomology with Z-coeflicients also has the expected relation to
¢(X,s) and our cohomology groups recover those previously studied
by Lichtenbaum and Geisser.
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1. INTRODUCTION

In [28] Lichtenbaum suggested the existence of Weil-étale cohomology groups
for arithmetic schemes X (i.e. separated schemes of finite type over Spec(Z))
which are related to the zeta-function (X, s) of X as follows.

a)

The compact support cohomology groups H:( Xy, R) are finite dimen-
sional vector spaces over R, vanish for almost all ¢ and satisfy

> (=1)"dimg Hi(Xw,R) = 0.
i€z
The function (X, s) has a meromorphic continuation to s = 0 and
orde—o ¢(X,5) = Y (=1)"-i - dimg H}(Xw,R).
i€z

There exists a canonical class § € H 1(XW,R) so that the sequence

2 B (xw, R) 2L B (g, R)
is exact.
The compact support cohomology groups H:(Xw,Z) are finitely gen-

erated over Z and vanish for almost all i.
The natural map from Z to R-coefficients induces an isomorphism

H{(Xw,Z) @z R = H{(Xw,R).
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f) If ¢*(X,0) denotes the leading Taylor-coefficient of ((X,s) at s = 0
and _
AR = (X)detr H( Xy, R) Y
i€z
the isomorphism induced by ¢) then

Z-M¢H(X,0) = Q) detz Hi(Xw, Z) )
icZ
where the determinant is understood in the sense of [26].
If X has finite characteristic these groups are well defined and well under-
stood by work of Lichtenbaum [27] and Geisser [17,18]. In particular all the
above properties a)-f) hold for dim(X) < 2 and in general under resolution
of singularities. Lichtenbaum also defined such groups for X = Spec(OF)
where F is a number field and showed that a)-f) hold if one artificially rede-
fines H!(Spec(Op)w,Z) to be zero for i > 4. In [14] it was then shown that
Hi(Spec(Or)w, Z) as defined by Lichtenbaum does indeed vanish for odd i > 5
but is an abelian group of infinite rank for even i > 4.
In any case, in Lichtenbaum’s definition the groups H!(Spec(Or)w,Z) and
H!(Spec(Op)w,R) are defined via an Artin-Verdier type compactification
Spec(OF) of Spec(OF) [1], where however H'(Spec(OF )y, F) is not the coho-
mology group of a topos but rather a direct limit of such. The first purpose of
this article is to give a definition of a topos Spec(OF)y;, which recovers Licht-
enbaum’s groups (see section 5 below). This definition was proposed in the
second author’s thesis [31] and is a natural modification of Lichtenbaum’s idea
which is suggested by a closer look at the étale topos Spec(Op)et-
In [1] Artin and Verdier defined a topos X for any arithmetic scheme X —
Spec(Z) so that there are complementary open and closed immersions

Xet — yet — Sh(XOO)

the sense of topos theory [19]. Here X, is the topological quotient space
X(C)/Gr where X(C) is the set of complex points with its standard Euclidean
topology and Gg = Gal(C/R). If X is an arithmetic scheme and ) denotes
either X or X we define the Weil-étale topos of ) by

yW = yet Xwet SpeC(Z)W,

a fibre product in the 2-category of topoi. This definition is suggested by the
fact that the Weil-étale topos defined by Lichtenbaum for varieties over finite
fields is isomorphic to a similar fibre product, as was shown in the second
author’s thesis [31] and will be recalled in section 3 below. The work of Geisser
[18] shows that Lichtenbaums’s definition is only reasonable (i.e. satisfies a)-
f)) for smooth, proper varieties over finite fields. Correspondingly, one can
only expect our fibre product definition to be reasonable for proper regular
arithmetic schemes.

The second purpose of this article is to show that this is indeed the case as far
as R-coefficients are concerned. Our main result is the following
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THEOREM 1.1. Let X be a reqular scheme, proper over Spec(Z).
i) For X = Spec(Op) one has

Spec(Or )y, = Spec(Op) X Spec@).. Spec(Z)yy,

where Spec(Or )y, is the topos defined in section 5 below, based on
Lichtenbaum’s idea of replacing Galois groups by Weil groups.

ii) If X — Spec(Fp) has characteristic p then our groups agree with those
of Lichtenbaum and Geisser and a)-f) hold for X.

iii) If X is flat over Spec(Z) and the Hasse-Weil L-functions L(h'(Xg), s)
of all motives h'(Xg) satisfy the expected meromorphic continuation
and functional equation. Then a)-c) hold for X.

The assumptions of iii) are satisfied, for example, if X is a regular model of a
Shimura curve, or of a self product E x --- x E where E is an elliptic curve,
over a totally real field F'.

Unfortunately, properties d) and e) do not hold with our fibre product de-
finition, even in low degrees, and we also do not expect them to hold with
any similar definition (see the remarks in section 9.3). The right definition of
Weil-étale cohomology with Z-coefficients for schemes of characteristic zero will
require a key new idea, as is already apparent for X = Spec(Op).

We briefly describe the content of this article. In section 2 we recall pre-
liminaries on sites, topoi and classifying topoi. Section 3 contains the proof
that Lichtenbaum’s Weil-étale topos in characteristic p is a fibre product via a
method that is different from the one in the second author’s thesis [31]. In sec-
tion 4 we recall the definition of X, and the corresponding compact support
cohomology groups H(Xe,F). In section 5 we define Spec(Op)y, and give
the proof of Theorem 1.1 i) (see Proposition 5.5). In section 6 we define Xyy,
describe its fibres above all places p < co and its generic point. In section 7 we
compute the cohomology of Xy with R-coefficients following Lichtenbaum’s
method of studying the Leray spectral sequence from the generic point. This
section is the technical heart of this article. In section 8 we compute the com-
pact support cohomology H!(Xy,,R) via the natural morphism Xy — X
and prove properties a) and ¢) (see Theorem 8.2). The class 6 in ¢) is defined
in subsection 8.3.

Section 9 introduces Hasse-Weil L-functions of varieties over Q as well as Zeta-
functions of arithmetic schemes and contains the proof of Theorem 1.1 ii) (see
Theorem 9.2) and of property b) (see Theorem 9.1), thereby concluding the
proof Theorem 1.1 iii). In subsection 9.4 we show that property f) for (X, s)
is compatible with the Tamagawa number conjecture of Bloch and Kato [4] (or
rather of Fontaine and Perrin-Riou [15]) for [, , L(h*(Xg),s) "V at s = 0.
In order to do this we need to augment the list of properties a)-f) for Weil-étale
cohomology with further natural assumptions g)-j) of which g) and h) hold
in characteristic p, and we need to assume a number of conjectures which are
preliminary to the formulation of the Tamagawa number conjecture. Finally,
in section 10 we prove some results related to the so called local theorem of
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invariant cycles in [-adic cohomology, and we formulate analogous conjectures
in p-adic cohomology. These results may be of some interest independently of
Weil-étale cohomology, and are necessary to establish the equality of vanishing
orders .

orde— ¢(X, 5) = orde— [ [ L(h'(Xg), s) ")

i€L

for regular schemes X’ proper and flat over Spec(Z).
Acknowledgements: The first author is supported by grant DMS-0701029 from
the National Science Foundation. He would also like to thank Spencer Bloch
for a helpful discussion about the material in section 10 and the MPI Bonn for
its hospitality during the final preparation of this paper.

2. PRELIMINARIES

In this paper, a topos is a Grothendieck topos over Set, and a morphism of
topoi is a geometric morphism. A pseudo-commutative diagram of topoi is said
to be commutative. Finally, we suppress any mention of universes.

2.1. LEFT EXACT SITES. Recall that a Grothendieck topology J on a category
C is said to be sub-canonical if J is coarser than the canonical topology, i.e. if
any representable presheaf on C is a sheaf for the topology J. A category C is
said to be left exact when finite projective limits exist in C, i.e. when C has a
final object and fiber products. A functor between left exact categories is said
to be left exact if it commutes with finite projective limits.

DEFINITION 1. A Grothendieck site (C,J) is said to be left exact if C is a left
exact category endowed with a subcanonical topology J. A morphism of left
exact sites (C', J') — (C,J) is a continuous left exact functor C' — C.

Note that any Grothendieck topos, i.e. any category satisfying Giraud’s axioms,
is equivalent to the category of sheaves of sets on a left exact site. Note also
that a Grothendieck site (C, J) is left exact if and only if the canonical functor
(given in general by Yoneda and sheafification)

y:C—(C,J)

—_~—

identifies C with a left exact full subcategory of (C, 7). The following result is
proven in [19] IV.4.9.
LEMMA 1. A morphism of left exact sites f* : (C',J') — (C,J) induces a

morphism of topoi f : (C/T7) — (C/’,\i) Moreover we have a commutative
diagram

€.7) —— @7

e e

c L ¢

where the vertical arrows are the fully faithful Yoneda functors.
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2.2. THE TOPOS T. We denote by Top'® (respectively by Top®) the category of
locally compact topological spaces (respectively of compact spaces). A locally
compact space is assumed to be Hausdorff. The category Top'® is endowed
with the open cover topology J,p, which is subcanonical. We denote by 7 the
topos of sheaves of sets on the site (T'op'®, J,,). The Yoneda functor

y:Top'® — T

is fully faithful, and Top'® is viewed as a generating full subcategory of 7. For
any object T of Top'®, T is locally compact hence there exist morphisms

[Ty = [[vE:i — T

where {U; C T} is an open covering, and K; is a compact subspace of T.
It follows that [[yU; — yT is an epimorphism in 7, hence so is [[yK; —
yT'. This shows that the category of compact spaces Top® is a generating full
subcategory of 7.

The unique morphism ¢ : 7 — Set has a section s : Set — 7 such that ¢, = s*
hence we have three adjoint functors t*, t, = s*, s,. In particular ¢, is exact
hence we have H" (7T, A) = H"(Set, A(x)) = 0 for any n > 1 and any abelian
object A.

2.3. CLASSIFYING TOPOIL.

2.3.1. General case. For any topos S and any group object G in S, we denote
by Bg the category of left G-object in S. Then B¢ is a topos, as it follows
from Giraud’s axioms, and B¢ is endowed with a canonical morphism Bg — S,
whose inverse image functor sends an object F' of S to F with trivial G-action.
If there is a risk of ambiguity, the topos Bg is denoted by Bs(G). The topos
B¢ is said to be the classifying topos of G since for any topos f : £ — S over
S, the category Homtop S (€, Bg) is equivalent to the category of f*G-torsors
in € (see [19] IV. Exercice 5.9).

2.3.2. Examples. Let G be a discrete group, i.e. a group object of the final
topos Set. Then Bg.:G is the category of left G-sets, and the cohomology
groups H*(BgetG, A), where A is an abelian object of Bg i.e. a G-module,
is precisely the cohomology of the discrete group G. Here Bg.G is called the
small classifying topos of the discrete group G and is denoted by B&™. If G is
the profinite group, the small classifying topos BE&™ of the profinite group G is
the category of continuous G-sets.

Let G be a locally compact topological group. Then G represents a group
object of 7, where 7 is defined above. Then Bg is the classifying topos of the
topological group G, and the cohomology groups H*(Bg,.A), where A is an
abelian object of Bg (e.g. a topological G-module) is the cohomology of the
topological group G. If G is not locally compact, then we just need to replace
7T with the category of sheaves on (T'op, Tp)-

Let S be a scheme and let G be a smooth group scheme over S. We denote by
Spt the big étale topos of S. Then G represents a group object of Sg; and Bg
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is the classifying topos of G. The cohomology groups H*(Bg,.A), where A is
an abelian object of Bg (e.g. an abelian group scheme over S endowed with a
G-action) is the étale cohomology of the S-group scheme G.

2.3.3. The local section site. For G any locally compact topological group, we
denote by Bp,,icG the category of G-equivariant locally compact topological
spaces endowed with the local section topology Jis (see [28] section 1). The
Yoneda functor yields a canonical fully faithful functor

BToplc G — BG .

Then one can show that the local section topology Jis on Brgpi-G is the topol-
ogy induced by the canonical topology of Bg. Moreover Bp,,.G is a generating
family of Bg. It follows that the morphism

BG — (BTopch, %5)

is an equivalence. In other words the site (Byz,,cG, Jis) is a site for the clas-
sifying topos B¢ (see [14] for more details).

2.3.4. The classifying topos of a strict topological pro-group. A locally compact
topological pro-group G is a pro-object in the category of locally compact topo-
logical groups, i.e. a functor I°? — Gr(Top'®), where I is a filtered category
and Gr(Top'®) is the category of locally compact topological groups. A locally
compact topological pro-group G is said to be strict if the transition maps
G; — G; have local sections. We define the limit of G in the 2-category of
topoi as follows.

DEFINITION 2. The classifying topos of a strict topological pro-group G is de-
fined as

Bg := lim; Bg;,
where the the projective limit is computed in the 2-category of topoi.

2.3.5. In order to ease the notations, we will simply denote by Top the category
of locally compact spaces. For any locally compact group G, we denote by
Bro,G the category of locally compact spaces endowed with a continuous G-
action.

2.4. FIBER PRODUCTS OF TOPOI. The class of topoi forms a 2-category. In
particular, Homtop (£, F) is a category for any of topoi E and F. If f,g: E = F
are two objects of Homtop (€, F), then a morphism o : f — g is a natural
transformation o : f, — g.. Consider now two morphisms of topoi with the
same target f : £ — S and g : F — S. For any topos G, we define the category

Homtop (ga 5) ><HomtO;D (G,8) Homtop (ga ]:)

whose objects are given by triples of the form (a, b, &), where a and b are objects
of Homtop (G, &) and Homtop (G, F) respectively, and

a:foa™=gob

is an isomorphism in the category Homtop (G,S).
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A fiber product £ xg F in the 2-category of topoi is a topos endowed with
canonical projections py : £ Xxg F — &, p2 : € Xs F — F and an isomorphism
«a: fopy = gopsy satisfying the following universal condition. For any topos G
the natural functor
Homtop(G,€ xs F) — Homtop(G,E) X momtop (g,5) Homtop (G, F)
d — (prod,paod,acd,)

is an equivalence. It is known that fiber products of topoi always exist (see
[24] for example). The universal condition implies that such a fiber product is
unique up to equivalence. A product of topoi is a fiber product over the final
topos

EXF=EXget F.

A square of topoi
g — &

Lo

E —— S
is said to be a pull-back if it is commutative and if the morphism

g —& XsSI,

given by the universal condition for the fiber product, is an equivalence. The
following examples will be used in this paper. Let f : £ — & be a morphism of
topoi. For any object X of S, the commutative diagram

E/f* X —— S/X

® l l

f

E — S
is a pull-back (see [19] IV Proposition 5.11). For any group-object G in S, the
commutative diagram

Be(f*G) —— Bs(G)

2) | |

P _

is a pull-back. This follows from the fact that Bs(G) classifies G-torsors.

3. THE WEIL-ETALE TOPOS IN CHARACTERISTIC P IS A FIBER PRODUCT

For any scheme Y, we denote by Y.; the (small) étale topos of Y, i.e. the
category of sheaves of sets on the étale site on Y. Let G be a discrete group
acting on a scheme Y. An étale sheaf F on Y is G-equivariant if F is endowed
with a family of morphisms {¢, : g.F — F; g € G} satisfying 1, = Idr and
©gh = @q 0 g(n), for any g, h € G. The category S(G;Ye:) of G-equivariant
étale sheaves on Y is a topos, as it follows from Giraud’s axioms. The coho-
mology H*(S(G;Yet), A), for any G-equivariant abelian étale sheaf on Y, is the
equivariant étale cohomology for the action (G,Y).
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An equivariant map of G-schemes u : X — Y induces a morphism of topoi
S(G; Xet) — S(G;Yet). Let Y be a scheme separated and of finite type over a
field k, let k/k be a separable closure and let F be an étale sheaf on Y @ k. An
action of the Galois group Gy on F is said to be continuous when the induced
action of the profinite group G}, on the discrete set F(U x} k) is continuous, for
any U étale and quasi-compact over Y. It is well known that the étale topos
Y is equivalent to the category S(Gp,Y ) of étale sheaves on Y =Y @ k
endowed with a continuous action of the Galois group Gy.
Let Y be a separated scheme of finite type over a finite field k¥ = F,. Let k/k be
an algebraic closure. Let Wy and Gy be the Weil group and the Galois group
of k respectively. The small classifying topos By is defined as the category of
Wi-sets, while Bg" is the category of continuous Gy-sets. We denote by Y™
the Weil-étale topos of the scheme Y, which is defined as follows. We consider
the scheme Y = Y ®@;, k endowed with the action of Wj,. Then the Weil-étale
topos Y33 is the topos of Wy-equivariant sheaves of sets on Y. We have a
morphism

vy Yt i=S(Wk,Yer) — S(Giy Yer) = Yoy
Indeed, consider the functor ;- which takes an étale sheaf 7 on Y endowed
with a continuous Gj-action to the sheaf F endowed with the induced Wj-
action via the canonical map W) — Gy. Then 3 commutes with arbitrary
inductive limits and with projective limits. Hence 75 is the inverse image of
a morphism of topoi vy. This morphism has been defined and studied by T.
Geisser in [17]. Note that the Weil-étale topos of Spec(k) is precisely By' and
that the étale topos Spec(k)et is equivalent to Bg'. In this case the morphism
Y = a: Byt — Bgr, from the Weil-étale topos of Spec(k) to its étale topos
is the morphism induced by the canonical map Wy — Gj. The structure
map Y — Spec(k) gives a Wj-equivariant morphism of schemes Y — Spec(k),
inducing in turn a morphism Y337 — By, This structure map also induces a
morphism of étale topos Yoy — Bg'. The diagram

Y o "
(3) | |
Bw, > Bg,

is commutative, where « is induced by the morphism Wy — Gj. The aim of
this section is to prove that the previous diagram is a pull-back of topoi. Our
proof is based on a descent argument. We need some basic facts concerning
truncated simplicial topoi. A truncated simplicial topos S, is given by the
usual diagram

Sy 23— 8138
Given such truncated simplicial topos S., we define the category Desc(S,.) of

objects of Sy endowed with a descent data. By [30], the category Desc(S,) is
a topos. More precisely, Desc(S,) is the inductive limit of the diagram S, in
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the 2-category of topoi. The most simple example is the following. Let S be a
topos and let X be an object of S. We consider the truncated simplicial topos
(§,X)e: S/(XXxXxX)z=—S/(X xX) = 8/X

where these morphisms of topoi are induced by the projections maps (of the
form X x X x X - X x X and X x X — X) and by the diagonal map
X — X x X. Tt is well known that, if X covers the final object of S (i.e.
X — es is epimorphic where es is the final object of §), then the natural
morphism
Desc(S,X)e — S

is an equivalence (see [12] Chapter 4 Example 4.1). In other words S/X — S
is an effective descent morphism for any X covering the final object of S.

LEMMA 2. Let f: & — S be a morphism of topoi and let X be an object of S
covering the final object. The morphism f is an equivalence if and only if the
induced morphism
f/IX: €/ X —S8/X
is an equivalence.
Proof. The condition is clearly necessary. Assume that f/X is an equivalence.
We have §/(X x X) = (S/X)/(X x X) and §/(X x X x X) = (§/X)/(X x
X x X), for any projection maps X x X — X and X x X x X — X. Hence
the triple of morphisms (f/X x X x X, f/X x X, f/X) yields an equivalence
of truncated simplicial topoi
f/ : (g’f*X)' - (va)'
This equivalence induces an equivalence of descent topoi
Desc(f/) : Desc(E, f*X)e — Desc(S,X)e
such that the following square is commutative

Desc(€, f*X)e Descli/), Desc(S,X)

l !

f

£ —_— S

This shows that f is an equivalence since the vertical maps are equivalences. [J

THEOREM 3.1. LetY be a scheme separated and of finite type over a finite field
k. The canonical morphism

Yi" — Yet X g By,
k
is an equivalence.
Proof. The morphism
. sm sm
f : YW — Yy XB&TI: BW;C

is defined by the commutative square (3). Let p: Ye; XBgn Byt — By be the
second projection. Consider the object EWj, of By defined by the action of
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Wi on itself by multiplication, and let p* EW}, be its pull-back in Y x By By
It is enough to show that the morphism
f/p EWk /f*p*EWk — (Yet XBgZ BWZ)/p*EWk
is an equivalence. o
Recall that Y5/ := Set (W, Y) is the topos of Wi-equivariant étale sheaves on

Y. The object f*p* EW} is represented by the Wjy-equivariant étale Y -scheme
[w, Y — Y. One has the following equivalences

Vi) fpt EWy, = Set(Wi, Y /HyY Set( Wk,HY

Consider now the localization (Y x By BWk) /p* EW},. We have the following
canonical equivalences:

(4) (e Xpg B/ EWi = Yo g B X pegn Set

(5) = Yer X pyr Set

(6) = lim (Yer xByr, | Set)

(7) = Jim (Y By, | (B}, ./ EGy k)
(8) = Jim (Yot /Y")

9) = lim Y,

(10) > (i ¥')oi = Vo

Indeed, (4) follows from the canonical equivalence By /EW) = Set. The
inverse limit in (6) is taken over the Galois extensions k'/k. Using the natural
equivalence

B, = lim B k)
(6) follow from the universal property of limits of topoi. For (7) we use again
Bl iy / EG(K' [k) =2 Set.

Then (8) follows from the fact that the inverse image of EG(k’/k) in the étale
topos Yy, is the sheaf represented by the étale Y-scheme Y’ :=Y x,, k’. Then
(9) is given by ([19] III Proposition 5.4), and (10) is given by ([31] Lemma 8.3),
since the schemes Y’ are all quasi-compact and quasi-separated. We obtain a
commutative square

—_ Id —_

th —_— th
(11) l l
* 0k f “EW, *
Yar £t EWy L2 (Vo x e B /0" EWy

where the vertical maps are the equivalences defined above. It follows that
f/p*EW}, is an equivalence, and so is f by Lemma 2. O
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COROLLARY 1. There is a canonical equivalence
}/et XBE’Z BWk = V‘?/m X T

Proof. The Weil group Wy, is a group of the final topos Set. If u : 7 — Set
denotes the unique map, then u*Wj, is the group object of 7 represented by
the discrete group Wj. Hence one has (see the pull-back diagram (2)):

BIS/[T;Z x T = BM(Wk) x T = BT(ka) =: BWk~
The previous theorem therefore yields
Yer XBgn By, =Y XByr By x T =2Yy" xT.

O

DEFINITION 3. We define the big Weil-étale topos of Y as the fiber product
YW = Yet XBSGTZ BWk = Vst x 7.

COROLLARY 2. Letpy : Yy — Y3/ and pa : Yiv — T be the projections. Then
for any abelian object A" of Yy, one has

H"(Yw,A) = H* (Y, p1.A).
If A is an abelian object of T, then
H"(Yw,pyA) = H" (Y™, A(x)).

~

Proof. This follows from Corollary 12, using the equivalence Yy = Y™ x
7. O

Define the sheaf R on Yy as p3(yR), where yR is the object of 7" represented
by the standard topological group R. Then we have canonical isomorphisms

H"(Yw,R) > H"(Y7",R) and H"(Yw,Z) = H*(Y;3", Z)
as it follows from the previous corollary.

COROLLARY 3. Let a : G — H and B : G’ — H be two homomorphisms of
group objects in a topos S. If a is an epimorphism then the natural morphism

[+ Bgxyg — Bg Xy Bgr
is an equivalence.

Proof. Let es be the final object in S. The unique map G’ — eg is epimorphic,
since the unit of G’ yields a section es — G’. Therefore, the morphism EG’ —
eg’ in Bgr, where eg/ is the final object of Bg, is epimorphic. We denote the
second projection by

p: Bg xp, Bg: — Bg
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Let K be the kernel of «, so that G/K = H. On the one hand, we have the
following canonical equivalences:
(Bg % B,, Bg)/p"EG’ = Bg x ,, (Bg'/p"EG')
=~ Bg XB,, S
= Bg X By (BH/EH)
= Bg/oz*EH
= Bg/(G/K)

= By

Here G/K is endowed with its natural G-action. The second, the third and the
last equivalences are given by ([19] IV.5.8), and the fourth equivalence is given
by the pull-back diagram (1).

On the other hand, we have an exact sequence of group objects in S

1-K—-GxyG —G —1.
Indeed, the kernel of G x4 G’ — G’ is given by
GxnG xges=Gxyes=K.

Moreover, G x4 G’ — G’ is epimorphic, since epimorphisms are universal in a
topos. We obtain

Bgxyg' /1P EG" = Bgxsyg /(G X3 G'/K)
and we have a commutative square

By _Ie . By

(12) l l
*Eg/
Bgx.g'/[*p* EG B, (Bg X B, Bg')/p*EG'

where the vertical maps are the equivalences defined above. Hence f/p*EG’ is
an equivalence. By Lemma 2, f is an equivalence as well, since EG' — eg/ is
epimorphic. O

COROLLARY 4. Let o : G — H and B : G’ — H be two morphisms of locally
compact topological groups. If a has local sections then the natural morphism

[t Baxyc — Bg Xpy Bar
is an equivalence.

Proof. Since a : G — H has local sections, the induced morphism y(G) — y(H)
is an epimorphism in 7. Hence the result follows from Corollary 3. g
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4. ARTIN-VERDIER ETALE TOPOS OF AN ARITHMETIC SCHEME

Let X be a scheme separated and of finite type over Spec(Z). We denote by X"
the complex analytic variety associated to X ®z C, endowed with the standard
complex topology. The Galois group G of R acts on X*"*. The quotient space
Xoo 1= X /G is endowed with the quotient topology. We consider the pair

X = (X, Xy).
As a set, X is the disjoint union X J]X,. The Zariski topology on X is
defined as follows. An open subset (U, D) of X is given by a Zariski open
subscheme U C X and an open subspace D C U, for the complex topology.
We define the category Etz of étale X-schemes as follows. An étale X-scheme
is an arrow f : (U,D) — (X, X)), where U — X is an étale morphism in
the usual sense and D is an open subset of Uy,. The map foo : D — X
is supposed to be unramified in the sense that f.(d) € X(R) if and only if
d € DNU(R). An étale X-scheme U is said to be connected (respectively
irreducible) if it is connected (respectively irreducible) as a topological space.
A morphism (U, D) — (U’',D’) in the category Ets is given by a morphism
of étale X-schemes U — U’ inducing a map D — D’. The étale topology Jet
on the category Et is the topology generated by the pretopology for which a
covering family is a surjective family. The Artin-Verdier étale site is left exact.

DEFINITION 4. The Artin-Verdier étale topos of X is the category of sheaves
of sets on the Artin-Verdier étale site:

Xet = (Et?, jet)~

The object yX := y(X,0) is a subobject of the final object yX of X;. This
yields an open subtopos

?et/y(;a 0)) — ?et-

We have the following canonical identifications (see [19] III Proposition 5.4):

?et/y('xv 0) = (Et?/;\,_@;a u7znd) = (E?);\a_\/7€t) = Xet

where X, is the usual étale topos of X', and J;yq is the topology on Et/(X,0)
induced by Je; on Etz via the forgetful functor Et/(X,0) — Etz. We thus
obtain an open embedding

(b : Xet — yet
Let Sh(X) be the topos of sheaves of sets on the topological space X, i.e.

the category of étalé spaces on X.,. We consider Sh(X.,) as a site endowed
with the canonical topology J.q,. There is a morphism of left exact sites

:;o : (Et77 jet) I (Sh(Xoo)7jcan)
(U, D) — D — X

u

The resulting morphism of topoi

Uoo : Sh(Xoo) — Xt
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is precisely the closed complement of the open subtopos X.; — X, defined
above, i.e. we have the following result.

PROPOSITION 4.1. There is an open-closed decomposition of topoi
0 Xog — Xep — Sh(Xoo) : Uno

The gluing functor v’ ¢. can be made more explicit as follows. There is a
canonical morphism of topoi

a: Sh(Gr, X*") — Xy

where Sh(Gg, X*") is the topos of Ggr-equivariant sheaves on the topological
space X", i.e. the category of Gr-equivariant étalé spaces on X*". The map
« is defined by the morphism of left exact sites which takes an étale X'-scheme
U to the Gr-equivariant étalé space U™ over X" (note that U — X" is a
GRr-equivariant local homeomorphism since the morphism U ®z C — X ®z C
is étale and compatible with complex conjugation).

The quotient map X" — X" /Gy yields another morphism of topoi

(ﬂ*,ﬂfR) : Sh(Gg, X)) — Sh(Xy).

*

Here 7w : X" — X, is the quotient map, 7* is the usual inverse image and
7C® F is the Gg-invariant subsheaf of the the direct image m,F, i.e. for any
open U C X, one has

WER]:(U) = f(w_lU)GR.
Then we have an identification of functors

u' . =2 TERQT Xy — Sh(Xs)

*

Let us consider the category (Sh(Xs) , Xer, T¢2a*) defined in ([19] IV.9.5.1) by
Artin gluing. Recall that an object of this category is a triple (F, E, o), where F
is an object of Sh(X,), E is an object of X.; and ¢ is a map ¢ : F — 7¢*a*E.

COROLLARY 5. The category X is canonically —equivalent —to
(Sh(Xso) , Xet, TEF Q).

Proof. There is a canonical functor

O: Xy — (Sh(Xx), Xet, ulops)

F o (us T, p*F,0)
where the morphism

0 usF — ul (9™ F)
is induced by the adjunction transformation Id — @.p*. By ([19] 1V.9.5.4.a)
the functor @ is an equivalence of categories, since e : ﬁh(Xoo) s X is the
closed complement of the open embedding ¢ : X,y — X.;. Hence the result
follows from the isomorphism

G

* ~ R *
U s E T Rl
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COROLLARY 6. We denote by oo the archimedean place of Q. The commutative
square

Sh(Xs) —  Sh(co)

(13) | |

X ot _f, Spec(Z),,

is a pull-back, where Sh(oco) = Set is the category of sheaves on the one point
space.

Proof. The map X — Spec(Z) induces a morphism of étale topos f. Consider
the open embedding Spec(Z).; — Spec(Z),,. Its inverse image under the map
fis X4 — Xp. The result therefore follows from Proposition 4.1 and ([19] IV
Corollaire 9.4.3). O

PROPOSITION 4.2. For any prime number p, we have a pull-back
(X ®zFp)ee — Spec(Fp)et

(14) | |

Xet SN Spec(Z),,

Proof. The morphism Spec(F,)e; — Spec(Z)
hence one is reduced to show that

. factors through Spec(Z)c:,

(X Rz IFp)et = Xet XSpec(Z) + SpeCaFP)Et'

e

This follows from ([19] IV Corollaire 9.4.3) since Spec(F,) — Spec(Z) is a closed
embedding. O

4.1. ETALE COHOMOLOGY WITH COMPACT SUPPORT. It follows from Corol-
lary 5 that we have the usual sequences of adjoint functors (see [19] IV.14)

* * !
1, 97, Px and U, Usow, Use-

between the categories of abelian sheaves on X s, Xop and Sh(Xy). In partic-
ular ue. is exact and @* preserves injective objects since ¢y is exact. For any
abelian sheaf A on X.;, one has the exact sequence

(15) 0— prp* A — A — Usosting A — 0,
where the morphisms are given by adjunction.

DEFINITION 5. Assume that X is proper over Spec(Z) and let A be an abelian
sheaf on Xg. The étale cohomology with compact support is defined by

Hél(Xetu A) = Hn(yeh SD'A)
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PROPOSITION 4.3. Let X be a flat proper scheme over Spec(Z). Assume that
X is normal and connected. Then the R-vector space H(X.:,R) is finite di-
mensional, zero for n large, and we have
H} (Xt ,R) =0 forn=0
= H°(Xy,R)/R forn =1
= H" Y (X, R) forn>2

Proof. The exact sequence
0— R >R — uxR—0
and the fact that u..4 is exact give a long exact sequence
0 — HY(Xer,R) — HO(X ey, R) — H(Xoo, R) — H; (Xer, R) — H' (X4, R) —
The inclusion of the generic point of X yields a morphism of topoi
n: (Spec K (X))ot — Xet.

We have immediately R"n.R = 0 for any n > 1 since Galois cohomology is
torsion and R is uniquely divisible. Moreover, we have n,R = R. Indeed,
the scheme X is normal hence the set of connected components of an étale
X-scheme I is in 1-1 correspondence with the set of connected components of
U x x Spec K(X), i.e. one has

mo(U X x Spec K(X)) = mo(U) = mo(U).

Therefore the Leray spectral sequence associated to the morphism 7 gives

H™(Xe,R) = H"(Gg(x),R).
We obtain H°(X.;,R) = R and H"(X.,R) = 0 for n > 1, and the result
follows. O

5. THE DEFINITION OF Spec(Or)y,

Let F be a number field. We consider the Arakelov compactification X =
(Spec Op, X)) of X = Spec Op, where X, is the finite set of archimedean
places of F. Note that this is a special case of the previous section, since X, is
the quotient of X ® C by complex conjugation. We endow X with the Zariski
topology described previously.

If F/F is an algebraic closure and F//K/F a finite Galois extension then the
relative Weil group W is defined by the extension of topological groups

1—=Ckg = Wg/p— Ggp—1

corresponding to the fundamental class in H?(G k7, CK) given by class field
theory, where Ck is the idele class group of K. A Weil group of F' is then
defined as the projective limit Wg := [im W, computed in the category of

topological groups. Alternatively, let F//K/F be a finite Galois extension and
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let S be a finite set of places of F' containing all the places which ramify in K.
Then the fundamental class in

H?*(Ggr,Ck) =2 H*(Gg/r,Ck,s)
yields a group extension
1—-Cks—Wk/ps— Gg/rp—1
where Ck g is the S-idele class group of K. Then one has (see [28])

Wp i=limWg p =limWgr s

5.1. THE WEIL-ETALE TOPOS. We choose an algebraic closure F'/F and a Weil
group Wr. For any place v of F, we choose an algebraic closure F,/F, and
an embedding F' — F, over F. Then we choose a local Weil group Wr, and a
Weil map 0, : Wg, — Wg compatible with F—FE,.

Let Wj be the maximal compact subgroup of Wg,. For any closed point
v € X (ultrametric or archimedean), we define the Weil group of "the residue
field at v” as follows

Wiy == Wr, /Wi, ,

while the Galois group of the residue field at v can be defined as Gy, =
GF,/I,. Note that Gy, is the trivial group for v archimedean. For any v,
the Weil map Wg, — GF, chosen above induces a morphism W,y — Gi(y)-
Finally, we denote by

Qo Wi, — Wg, /Wi = Wi

the map from the local Weil group Wp, to the Weil group of the residue field
at v e X.

DEFINITION 6. Let T be the category of objects (Zo, Z,, 1) defined as follows.
The topological space Zy is endowed with a continuous Wg-action. For any
place v of F', Z,, is a topological space endowed with a continuous Wy,,)-action.
The continuous map f, : Z, — Zy is Wg, -equivariant, when Z, and Zy are
seen as W, -spaces via the maps 0, : Wg, — Wg and q, : Wg, — Wi,.
Moreover, we require the following facts.
e The spaces Z, are locally compact.
e The map f, is an homeomorphism for almost all places v of F and a
continuous injective map for all places.
e The action of Wr on Zy factors through Wi, g, for some finite Galois
subextension F/K/F.
A morphism
¢) : (ZO7 Zva fv) - (Z(l)v Z;n fq/))
in the category Tk is a continuous Wr-equivariant map ¢ : Zy — Zj, inducing
a continuous map ¢, : Zy, — Zy for any place v. Then ¢, is Wy, -equivariant.
The category Tz is endowed with the local section topology Js, i.e. the topology
generated by the pretopology for which a family

{Sﬁi : (Zi,OaZi,v;fi,v) - (ZOaZvva)7 (RS I}
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is a covering family if [1,c; Ziw — Zy has local continuous sections, for any
place v.

LEMMA 3. The site (T'g, Jis) is left exact.

Proof. The category Tz has fiber products and a final object, hence finite
projective limits are representable in T's. It remains to show that 7, is sub-
canonical. This follows easily from the fact that, for any topological group G,
the local section topology J;s on Br,,G coincides with the open cover topology
Jop, which is subcanonical. O

DEFINITION 7. We define the Weil-étale topos Xy as the topos of sheaves of
sets on the site defined above:

XW = (Tanls)~
ProrosIiTION 5.1. We have a morphism of topoi

j : BWF — XW
Proof. By [14] Corollary 2, the site (Brop,Wr, Jis) is a site for the classifying
topos By, is defined as the topos of y(Wg)-objects of 7. By [14] Corollary 2,
the site (BropWr, Jis) is a site for By,.. The morphism of left exact sites

j* : (Tanls) — (BTopWF7x7ls)
(207Zvafv) L ZO

induces the morphism of topoi j. O
PROPOSITION 5.2. The morphism of topoi j : By, — Xw factors through
BEK/F,S = @BWK/F,S'

The induced morphism iy : By — X is an embedding.

W k/r,s

Proof. Let (Zy, Z,, f») be an object of T'y. The action of Wr on Zj factors

through W p, for some finite Galois sub-extension F'/K/F. Since Wi p and

Z are both locally compact, this action is given by a continuous morphism
P WK/F — Aut(Zo)

where Aut(Zp) is the homeomorphism group of Z; endowed with the compact-
open topology. The kernel of p is a closed normal subgroup of Wi ,r since
Aut(Zy) is Hausdorff. Moreover, there exists an open subset V of X such that
fv 1 Zy — Zy is an isomorphism of W, -spaces for any v € V. Let W}v denotes
the image of the continuous morphism
Wi, — Wk, — Wi/,

endowed with the induced topology. Then rVV}l7 is in the kernel of p for any
v € V. Let Ny be the closed normal subgroup of Wk, generated by the

subgroups WI}% for any v € V. Then p induces a continuous morphism

WK/F/NV e Aut(Z())
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We choose V' small enough so that K/F is unramified above V' and we set
S :=X — V. Then we have

Ny = H Ok. € Ckx € Wgp and Wi p/Ny = Wik/ps.
wlv, veEV
Hence the action of Wr on Z, factors through W /p 5, for some finite Galois
sub-extension F//K/F and some finite set S of places of F containing all the
places which ramify in K. The morphism of left exact sites
j* . (TX’; u7ls) — (BTOpWF7 s7ls)
(Z07 Zva fv) — ZO '

therefore induces a morphism

sz) : (TXa ‘.7ls) — (ZZ_W)L BTopWK/F,Sa ‘.7l5)
(ZOamev) — Zy

where (lim BropWk s, Jis) is the direct limit site. ~ More precisely,
lim BropWi/F,s is the direct limit category endowed with the coarsest topol-
ogy J such that the functors Bro,Wgk/ps — @)@BT@WK/ r,s are all con-
tinuous, when Br,, Wk /p s is endowed with the local section topology. One
can identify MBTopWK/F,S with a full subcategory of Br.,,Wr and J
with the local section topology Js. By ([19] VI.8.2.3), the direct limit site
(lz_)m BropyWgk r,s,Jis) is a site for the projective limit topos BEK/F,s' We
obtain a morphism of topoi

io : BKK/F,S

It remains to show that this morphism is an embedding. Let F be an object
of By Then i§io«F is the sheaf associated with the presheaf

Y K/F,S"
Zglo*f : lim BTopWK/F,S — M

Z li o« F (Yo, Ys, fo
T iyt (Yo, Yo fo)

where the direct limit is taken over the category of arrows Z — (Yo, Yy, fo)-
For any object Z of lim BropWk s, there exist a finite Galois extension
Kz/F and a finite set Sz such that Z is an object of Br,,Wk, /r,s,. Consider
the cofinal subcategory Iy of the category of arrows defined above, where I
consists of the following objects. For any finite set S of places of F' such that
Sz C S, we consider the map Z — i§(Zo, Zy, fv) with Zy = Z as a Wg-space,
Zy = Z as a Wy,-space for any place v not in S and Z, =  for any v € S.
We thus have

o 0« F (Y0, Yo, fo) = lim @0+ F (2o, Zy, fu) = F(Z).
Zig (oY f) (Yo, Yy, fo) = lim io. F(Zo, 2o, fo) = F(Z)

Hence igio*}' is already a sheaf and we have
igioxF = ifigeF = F.
This shows that ig, is fully faithful, i.e. iy is an embedding.
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PROPOSITION 5.3. There is canonical morphism of topoi
f: Xw — Bg.
Proof. We have a commutative diagram of topological groups
Wr, —— Wi)

o I

Wgp —— R
where Wr — R is defined as the composition
WF—>Wab§CF—>Ri%R.

Hence there is a morphism of left exact sites

(17) f* : (BTopRv \7ls) — (TXv \.7ls)

Z — (Z,Z,1dz)
where Z is seen as Wp-space (respectively a Wy ,)-space) via the canonical
morphism Wr — R (respectively via Wi, — R). The result follows. O

5.2. THE MORPHISM FROM THE WEIL-ETALE TOPOS TO THE ARTIN-VERDIER
ETALE TOPOS. Let X be the Arakelov compactification of the number ring Op.
We consider below the Artin-Verdier étale site (Et 5; Jet) and the Artin-Verdier
étale topos X.; of the arithmetic curve X.

PROPOSITION 5.4. There ezists a morphism of left exact sites
'Y* : (Et)_Q jet) — (TX7t7ls)
U [— (U07UU7fv) .
The underlying functor v* is fully faithful and its essential image consists ex-
actly of objects (Uy, Uy, fv) of Tg where Uy is a finite Wg-set.

This result is a reformation of [31] Proposition 4.61 and [31] Proposition 4.62.
We give below a sketch of the proof.

Proof. For any étale X-scheme U, we define an object v*(U) = (Uy, Uy, f,) of
Tg as follows. The scheme U x ¢ Spec F is the spectrum of an étale F-algebra
and the Grothendieck-Galois theory shows that this F-algebra is uniquely de-
termined by the finite Gp-set

Up := Homgpee r(Spec F,U x ¢ Spec F) = Homx (Spec F,U).

Let v be an ultrametric place of F. The maximal unramified sub-extension
of the algebraic closure F,/F, yields an algebraic closure of the residue field

k(v)/k(v). The scheme U x g Spec k(v) is the spectrum of an étale k(v)-algebra,
corresponding to the finite G, (,,)-set

Uy := Homsgpec k(v)(Spec k(v),U x 5 Spec k(v)) = Homx (Spec k(v),U)

The chosen F-embedding F' — F,, induces a G, -equivariant map

fviUv 4>U0.
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Consider now an archimedean place v of F'. Define
U, = Homg(v,U)=U xg v

where the map v — X is the closed embedding corresponding to the
archimedean place v of F. As above, the F-embedding ' — F, induces a
G r,-equivariant map

fv : UU — Uo.

For any place v of F, the set U, is viewed as a Wy ,)-topological space via
the morphism Wy,(,) — Gy(,). Respectively, Uy is viewed as a Wg-topological
space via Wr — Gp. Then the map f, defined above is Wg, -equivariant. We
check that the map f, is bijective for almost all valuations and injective for all
valuations (see [31] Proposition 4.62). We obtain a functor

v FEty — Txk.

This functor is left exact by construction (i.e. it preserves the final objects
and fiber product) and continuous (i.e. it preserves covering families) since a
surjective map of discrete sets is a local section cover. The last claim of the
proposition follows from Galois theory. O

COROLLARY 7. There is a morphism of topoi v : Xy — Xes.

Proof. This follows from the fact that a morphism of left exact sites induces a
morphism of topoi. (|

5.3. STRUCTURE OF Xy AT THE CLOSED POINTS. Let v be a place of F.
We consider the Weil group Wiy, (,) and the Galois group Gy, of the residue
field k(v) at v € X. Note that for v archimedean one has Wi,y = R and
Grwy = {1}. Consider the big classifying topos Bw,,,, i.e. the category of
Y(Wi(v))-objects in 7. We consider also the small classifying topos Bg’:(v),
which is defined as the category of continuous Gy ,)-sets. The category of lo-
cally compact Wy (,)-spaces BropWy(y) is endowed with the local section topol-
ogy Jis- Recall that the site (BropWi(w), Jis) is a site for the classifying topos
Bw,,,- We denote by BjfgetsGr(v) the category of finite Gy (,)-sets endowed
with the canonical topology Jean. The site (BysetsGr(v)s Jean) s a site for the
small classifying topos Bg’:@).

For any place v of F', we have a morphism of left exact sites

'L: : (TX7 s7l9) — (BTOPWk(v)7 \-719)
(Z07mev) — Zv

hence a morphism of topoi
iv : BWk(v) h— XW
On the other hand one has morphism of topoi

. psm
Uy - BGk(v) — Xet
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for any closed point v of X. For v ultrametric, this morphism is induced by
the closed embedding of schemes
Spec k(v) — X

since the étale topos of Spec k(v) is equivalent to the category Bg”;(v) of con-
tinuous Gy,)-sets. Note that this equivalence is induced by the choice of an
algebraic closure of k(v) made at the beginning of section 5.1. By Corollary
4.1, there is a closed embedding

Sh(Xoo) = [ Set — Xet

Koo

which yields the closed embedding

Uy BSGT(U) = Set — Xet
for any archimedean valuation v of F'. In both cases, we have a commutative
diagram of left exact sites

«
a‘l)

(BTOka(’U)a\%S) — (BfSetsGk(v)ajcan)

- *
ZU u‘U

(T, Jis)  —L—  (Btg, Ju)

where uj(U) is the finite Gy,y-set Homg(Spec k(v),U) (respectively
Homx(v,U)) for v ultrametric (respectively archimedean). This commu-
tative diagram of sites induces a commutative diagram of topoi.

THEOREM 5.1. For any closed point v of X, the following diagram is a pull-back
of topoi.

Xy —— X
In particular, the morphism i, is a closed embedding.
Proof. We first prove a partial result.
LEMMA 4. The morphism i, is an embedding, i.e. 1,4 s fully faithful.
Proof. We use below the fact that the full subcategory
Wiy X Top = BropWi(v)

is a topologically generating subcategory of the site (BropWi(v), Jis). Here
Wi vy x Top consists in locally compact topological spaces of the form Z =
Wiy x T on which Wy, acts by left multiplication on the first factor. In
particular, a sheaf F of

BWk(v) = (BTOPWk('u)> -.7ls>
is completely determined by its values F (W) x T') on objects of Wi,y x Top.
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Let 7 be an object of By, ,,. Consider the adjunction map

(18) iy 0ty F — F.
The sheaf i} 0 i, F is the sheaf on (BropWi(v), Jis) associated to the presheaf
Z— Um0 F(Ye, Y, fu)=  lim  F(Y,
tois O T Q0 Yo fu) =t T )

where the direct limit is taken over the category of arrows Z — % (Yo, Ya, fuw)
with (Y, Y., fu) an object of T';.

Let F'/K/F be a finite Galois sub-extension, let S be a finite set of closed points
of X such that v € S and let Z = Wiy x T be an object of Wi,y x Top.
Consider the object of Ty

y(Ka Sa Z) = (T07Twafw)
defined as follows. We first define the topological space
To=Wkps X" Z = (Wgp,s X Wiy x T)/Wp, 2 (Wx/ps/Wp ) x T

endowed with its natural Wg-action. For any w not in S, we consider Ty, =
Wi/ rs "W Z on which Wy, acts via the map

Wiw) = Wr, /WE, — Wk/ps-

For any w € S such that w # v, we set T,, = 0, and we define T,, = Z. The
map fy, is the identity for any w not in S and

foiZ — Wiyps x"V™ Z

is the canonical map. This map f, is continuous and injective. The image of
W} in Wk s is compact, and the spaces Ty and T, are locally compact for
any place w so that Y(K, S, Z) is an object of Tg.

On the one hand, the functor Z — Wg/p s xWro 7 ig left adjoint to the
forgetful functor Bro,Wk/rs — BropWr,. On the other hand, for any object
(Yo, Yy, fu) of Tk, the action of Wr on Zj factors through Wy, p g for some
finite Galois extension K/F and some finite set S of places of F'. It follows
that

{V(K, S, Z), for K/F Galois, S finite }

yields a cofinal system in the category of arrows Z — i (Yp, Yo, fu) considered
above, for any fixed object Z of Wi,y X Top. Hence i}, o i,.F is the sheaf on
(BropWi(v), Jis) associated to the presheaf

Wiy X Top — Set

Z — lim F(,) = lim F(Z2)=F(Z)
Z—i3(Yo,Yu . fu) Z—i3V(K,S,2)
Since Wi, x T'op is a topologically generating subcategory of (Brop Wiy, Jis),
the sheaf on Bw,,, associated to this presheaf is F, and the adjunction mor-
phism (18) is an isomorphism. This shows that i, is fully faithful, i.e. i, is an
embedding. O
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DEFINITION 8. Let v be a closed point of X. We consider the morphism p, :
T — Bw,,, whose inverse image p, is the forgetful functor, and we denote by
17 the composite morphism

I =10y 0Py: 7T — BWW) — Xw.

For any object Z = Wj,(,y x T of the full subcategory Wy, (,y X T'op — BropWi(w)
and for any sheaf F of Xy, we have

19 PF(Z) = li FYo, Yy, fu) = li FY(K,S, Z

(19 #FZ)= Gm o FOYafa) = lm o FOUKSZ)
where we consider the pull-back presheaf i) F on Bro,Wy (). The morphism
pv : T — Bw,,,, is induced by the morphism of left exact sites given by the
forgetful functor Bro,Wy(,) — Top. By adjunction, for any space T' of T'op
and any presheaf P on Bro, Wi, we have

PyP(T) = P(Wi(w) x T).
Hence the isomorphism iz = pb o i gives

(20) BFT)=RF(Z)=  lm  FOK.5.2)

where Z := Wi,y x T'. We consider the category of compact spaces T'op®. The
morphism of sites (Top®, Jop) — (Top, Jop) induces an equivalence of topoi,
hence one can restrict our attention to compact spaces. Let us show that i2F
restricts to a sheaf on (Top®, Jop). Let {T; — T, i € I} be a covering family of
(Top®, Jop), i-e. alocal section cover of compact spaces. One can assume that
I is finite, since any covering family of (T'op®, Jop) can be refined by a finite
covering family. For any K/F and any S,

{y(Kv 57 Wk(v) X Tz) - y(K7 57 Wk(v) X T)}
is a covering family of (T'g, Jis). Moreover the fiber product
V(E, S, Wio) X T;) Xy(r,5,W, 0y xT) YK, S, Wiy X Tj)

computed in the category T'x, is isomorphic to Y(K, S, Wy, x Tj;), where Tj;
denotes T; x T;. It follows that the diagram of sets

FK, S, Wiy xT)) = [[FOEK, S, Wi xT3)) = [[ FOE, S, Wi xTi5))
i i,

is exact. Passing to the inductive limit over K and .S, and using left exactness

of filtered inductive limits (i.e. using the fact that filtered inductive limits

commute with finite products and equalizers), we obtain an exact diagram of

sets

EFT) = [[Fm) = [[EFT),
7 L,J

as it follows from (20). Hence 2 F is a sheaf on (T'op®, Jop). Therefore, for any
compact space T', one has

21 < F(T) =i2F(T) = li K, S, 7
(21) BF(T)=BFD) = lm  FOK.S,2)
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where Z = Wi,y x T
LEMMA 5. The family of functors
{it: Xy —»T,ve X%
is conservative, where X is the set of closed points of X.
Proof. Let F be an object of Xy,. We need to show that the adjunction map
(22) F— ][] iwisF.
veXO

is injective. For any (Zy, Zy, fw) of Tk, we have

1 GoizF)(Zo. Zu. f0) = [] 5F(20).

veX0 veXO

Note that, in the term on the right hand side of the equality above, Z, is
considered as a topological space without any action. For any v, we choose a
local section cover of the space Z,,:

{Tv,l — ZU, le AU}

such that T, ; is a compact subspace of Z,, for any index . Such a local section
cover exists since Z, is locally compact. The map

5 F(Zy) — ] isF(Ton).
leA,

is injective since 7% F is a sheaf. It is therefore enough to show that the com-
posite map

K F(Zo, 2w fu) — [] 5F(20) — ]  #F(Ton)
veXO veXO,IEA,

is injective. Let a, 8 € F(Zy, Zw, fu) be two sections such that x(a) = k(0).
For any pair (v,l), we consider

Kot F(Zo, Zuws fu) — [ 6F(To) — i2F (Ty ).
veXO leA,
For any (v,1), we have &, ;(a) = k,(8) and by (21)
i5F (To1) = imF (YV(K, S, Wiy X To,1))
where the direct limit is taken over the category of arrows
Wiy X Toy — iy VK, S, Wi(y) X Ty1).
The inclusion T, ; C Z, gives a Wy, (,)-equivariant continuous map
Wiy X Toq — iy(Zo, Zuw, fuw) = Zy-
Thus for any pair (v, (), there is an object Y(K, S, Wi,y X T,,;) and a morphism
V(K, S, Wiy X Ty1) — (Zo, Zw, fu)
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in the category T’y inducing the previous map
Wiy X Tog = in Y (K, S, Wiy X Ty 1) — iy (Zo, Zws fuw) = Zo

and such that o) = Bjv,1), Where o)1) (respectively f(,)) denotes the
restriction of a (respectively of 3) to Y(K, S, Wi,y x Ty,;). We obtain a local
section cover

{V(K, S, Wiy X Toy) = (Zo, Zu, fu), v € X°, 1 € Ay)}

in the site (T'g, Jis) such that o)) = B, for any (v,1). It follows that
a = (3 since F is a sheaf. Hence k is injective and so is the adjunction map
(22).

|

A morphism of topoi f is said to be surjective if its inverse image functor f*
is faithful.

COROLLARY 8. The following morphism is surjective:
(iv)ve)‘(o : H Bwk(“) — XW
veXO0
Proof. The morphism of topoi
(ig)ve)‘(o : H 7T — XW
veX0O
is surjective since its inverse image is faithful by the previous result. But

(iw)pexo factors through (iy),cx0, hence (iy),c 5o is surjective as well. O

Proof of Theorem 5.1. Since the morphism ¢, is an embedding, we have in fact
two embeddings of topoi

_ B sm _
Bwk(v) XW XXet BGk(v) XW

where the fiber product Xu x X BET@) is defined as the inverse image
fy_l(Bg;‘(v)) of the closed sub-topos B = — Xt under the morphism v (see
[19] IV. Corollaire 9.4.3). Therefore By, ,, is equivalent to a full subcategory
of Xw xx., Bgz(w. This fiber product is the closed complement of the open
subtopos Y — Xw where Y := X —v (see the next section for the definition
of Yy ). In other words, the strictly full subcategory Xw x %, Bg”;(v) of Xw
consists in objects G such that G x v*Y is the final object of Yy . It follows
that

ToxF XYY
is the final object of Yy, for any object F of Bw,,,-
We have to prove that Bw, ,, is in fact equivalent to Xw xx_, Bé’z(u). Let G
be an object of this fiber product, i.e. an object of Xy such that G x 4*Y is
the final object. Consider the adjunction map
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If w is a closed point of X such that w # v, then the morphism 4, factors
through Yy :
’iw : BWk(w) — YW — XW
We denote by iy, : Bw,,, — Yw the induced map. Hence
G = i”{—/,w(g xY)
is the final object of Bw,.,» since G x Y is the final object of Yy and i 18
left exact. On the other hand

500036 = 0% (103G X V)
is the final object of By, ,,, since i,.i5G x Y is the final object of Y. Hence
the map

iy (G) — 1y (l0x iy G)
is an isomorphism for any closed point w # v of X. Suppose now that w = v.
Then the map

in(9) — iy (ivxipG) = (iivw)inG = iyG
is an isomorphism by Lemma 4. Hence the morphism
iy (G) — 1y (i3 G)
induced by the adjunction map G — i,.1;,G is an isomorphism for any closed
point w of X. Since the family of functors

{ZZ) : XW — Bwk(w), w e X}

is conservative, the adjunction map G — 4,.4,G is an isomorphism for any
object G of 7_1(3521(”)). Hence any object of 7_1(357:@)) is in the essential
image of ... This shows that the morphism

BW’c(v) — Xw X Xet Bg:m
is an equivalence (this is a connected embedding). Theorem 5.1 follows. O

We consider the morphism

Xw = Spec(OF)y — Spec(Z)y,

induced by the map Spec(Or) — Spec(Z).
PROPOSITION 5.5. The canonical morphism

Sg: Xw — Xet X Spec(@).. mw
is an equivalence.

Proof. Let X’ be the open subscheme of X consisting of the points of X where
the map X — Spec(Z) is étale. Let Y — X be the complementary reduced
closed subscheme.
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(1) THE MORPHISM Jg IS AN EQUIVALENCE OVER X’ AND OVER Y. The
canonical morphism

Xiv = Xby Xspecqy, Spec(Z)y

is an equivalence. Indeed, the morphism X’ — Spec(Z) is étale hence we have

X/ ot X Specld).. Spec(Z)yy, = (Spec(Z),,/X") X Spec(@)., Spec(Z)y,
= Spec(Z) oy Xgpecrz),, (SPec(Z Spec(Z)y, /v X')
>~ Spec(Z)y, /v X'
~ Xy
Let Y’ be the image of Y in Spec(Z), such that Y’ x
with a structure of reduced closed subscheme of Spec(Z). The morphism of

étale topoi Yoy — Spec(Z),, factors through Y(,. It follows from Theorem 5.1
that one has

Spec( ) is given

Sec

Yet cht Spec(Z)W = Yet ><yelt }/elt me Spec(Z)W
=VYer ><Ye’t YI;V

We halve the following equivalence§ Yor = [1ey Bgfg( . Ve = ey Bé”;(m
and Yy, == [[ ¢y Bw,,,- We obtain

Yet XWet Spec(Z)W =Y Xy/ Y‘:V

~ H Bsm H
Gk(v peY’ Gk(p) W(p)

veY peEY’

= H BGk(v B& o BWk(p>)

vEY

) H Bw,., = Yw

veY
In view of the pull-back squarre (1), the last equivalence above follows from
the fact that

Bg:(“) = BSGT:(:D)/(G]C(I)) /Gk(’v)) — Bg:(p)

is a localization morphism.
(11) THE NATURAL TRANSFORMATION ¢ BETWEEN THE GLUEING FUNCTORS.
The previous step (i) shows that there is an open-closed decomposition of topoi

i Xy — Xet X Spec(@)., Spec(Z)y, «— Yw :i
By Theorem 5.1, we have another open-closed decomposition
i Xy — Xy« Yy i

The glueing functors associated to these open-closed decompositions are given
by i*j. and i*j.. The map Xy — X XSpec@)., Spec(Z)W induces a natural
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transformation
(23) t:1%je — 1"
Indeed, the following commutative diagram

X, —1 Xw — vy

(24) lfd léx lld
X{/V % Xet XS})TC(Z)St Spec(Z)W <1— YW

gives 0z oi =1iand dgoj =j. Then the natural transformation (23) is induced
by the adjunction transformation 6505, — Id as follows :

je 270505, 0 — 1 s

(111) THE GLUEING FUNCTORS ARE NATURALLY ISOMORPHIC. Since the dis-
joint sum topos Y =[] g Bw,,, 1s given by the direct product of the cate-
gories By, ,,, it is enough to show that the natural transformation

(25) s — iyds

is an isomorphism for any v € Y.

Let F be an object of Xi;,. The sheaf i} o j.F (respectively i} o j,F) is the
sheaf on (Wy(,y x T'op, Jis) associated to the presheaf if) o j,F (respectively to
the presheaf il o j.F). Recall that W,y x Top is a topologically generating
subcategory of (BropWi(v), Jis)- It is therefore enough to show that the natural
map

(26) P oj F —iboj.F,

of presheaves on Wy,(,,) x Top, is an isomorphism.

On the one hand, for any object F of Xj;, we have

27 PP F Wiy X T) = lim F((Yo, Y, fu) x X’
(27) PixF Wiy x T) Wity Xt Ve o) (Yo, Y, fu) )

(28) =lim,,, JFV(K/F,S, Wi x T) x X)

Wil k/F,s

where (28) is given by (19). See the proof of Lemma 4 for the definition of
V(K/F,S, Wy x T). On the other hand, for any object F of Xj;, we have

0j+ F Wi(oy x T) = lim j« F (Zo, Zw, fuw) = V < U)
= lim F((Zo, Zuw, fu) xv U x X')
where the direct limit is taken over the category of arrows
(29) Wis) X T = 05((Zoy Zus fu) = V = U) = Z, xv, U,.
Here, ((Zo, Zw, fw) — V < U) is an object of the fiber product site Cx, i.e.

(Zo, Zw, fw), V and U are objects of the sites TSpec(Z)’ EtSpec(Z) and Etg

respectively. Then (Zy, Z,, fu) Xv U is seen as an object of T'g. Finally, the
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place p is defined as the image of v € X in Spec(Z). We refer to [24] and section

7 for the definition of the site Cx.

There is a natural functor from the category of arrows of the form (29) to the

category of arrows (W) x T') — i5(Yo, Y, fu) sending ((Zo, Zw, fuw) — V

V') to (Zo, Zw, fw) Xv V'. This provides us with the natural map

(30) 13+ F Wh(w)y X T) — 03 F (W) x T).

In order to show that (30) is an isomorphism, we have to show that the system
Wk:(v) XT — ii((Z())Zwafw) Xy U))

where (Zy, Zy, fu) — V < U) runs over the class of objects in Cg, is cofinal
in the category of arrows A, 1 :

Wk(v) xT — Z:;(YE)? Ywa fw)

We know that the system given by the Y(K, S, Wi, x T')’s is cofinal in A, 7.
Here v € S and K/F' is unramified outside S. One can choose S large enough
so that S contains Y. Let S’ be the image of S in Spec(Z). Then K/Q is
unramified outside S’. If we denote by L/Q the Galois closure of K/Q (in the
fixed algebraic closure Q/Q), then L/Q remains unramified outside S’, and
L/F is Galois and unramified outside S. Moreover, we have a morphism

V(L/F, S, Wiy x T) — V(K/F, S, Wiy xT) in A, 1.
Hence one can restrict our attention to the objects of A, 7 of the form
Wk(”) xT — Ziy(K/F» Sv Wk(v) X T)

where K/Q is a Galois extension unramified outside S’. We denote again by p
the image of v in Spec(Z) and we consider the object

y(K/Q,S’,Wk(p) X T) —V «UinCg,

where V and U are defined as follows. Using Proposition 5.4, the étale Spec(Z)-
scheme V' is given by the Gig-set G q/I,, With no point over S’ — {p}, and
exactly one point over the place p corresponding to the distinguished Gg,-orbit
of G g/, on which the inertia group I, acts trivially. The étale X-scheme U
is given by the Gp-set G p/I,, with no point over S — {v}, and exactly one
point over the place v corresponding to the distinguished G r,-orbit of Gg/p /1,
on which the inertia group I, acts trivially. Finally, we enlarge S so that S is
the inverse image of S’ (which is the image of S) along the map X — Spec(Z).
Then the map U — V is well defined.

Assume that one has an identification

(31) y(K/F,S,Wk(U) XT):y(K/Q,S/,Wk(p) XT) XvU
in the category T's. It would follow that the system of objects
Wiy X T — iy,((Zo, Zw, fuw) xv U)

is cofinal in the category A, r. The map (30) would be an isomorphism for
any T and any F, hence (26) would be an isomorphism of presheaves for any
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F. This would show that the transformation (25) is an isomorphism. Hence
the transformation (23) would be an isomorphism as well.
It is therefore enough to show (31). One has

V(K/F, S, Wiy xT) = V(K/F,S, W) x (T, T, Idr)
and
V(K/Q,S" Wiy xT) = V(K/Q,S", Wyp) x (T, T, Idr)
in the category Tz, hence one can assume that 7' = * is the point. We have a
map in T'g

(32) V(K/F, S, W) — Y(K/Q, S, W) xv U.

and we need to show that it is an isomorphism. Let w be a point of X. If
w € S and w # v, then the w-component of both the right hand side and
the left hand side in (32) are empty. Assume that w is not in S. Then the
w-components of Y(K/F, S, Wyy)), V(K/Q,S", W), V and U are the Wi,(,)-
spaces WK/F,S/W};U, WK/Q’S//WéP, Gk o/lp and G p /1, respectively. But
we have an W, (,,)-equivariant homemorphism

Wi /rs/Wi, = Wi/g,s:/Wa,) X (Gx /1) (Gryr/l)-

Moreover, the v-component of Y(K/F, S, W), Y(K/Q,S", Wy()), V and U
are the Wy, ,y-spaces Wiy, Wip)s Gr(p)/Grew) and Gi(y)/Gr(w), where u the
unique point of U lying over v. But we have an Wy (,)-equivariant homemor-
phism

Wiw) = Wip) X (G /Griw) (Grw)/Grw)-
This shows that (32) is an isomorphism in T, and (31) follows.

(V) THE MORPHISM Jx IS AN EQUIVALENCE. We consider the glued topoi
(Yw, Xjy,i*ji) and (Yw, Xjp,1*j«). Recall that an object of (Y, Xy, 4*j.) is
atriple (E, F,o) with E € Yy, F € X{;, and 0 : E — i*j, F (see [19] IV.9.5.3).
There is a canonical functor
Xw — (Yw, Xy,
F  — (*F,j*F,i*F = i*j.j*F)

where i*F — i*j.j*F is given by adjunction. By ([19] IV Theorem 9.5.4), this
functor is an equivalence, and the same is true for the canonical functor

SpeC(Z)W - (YW7 X{//Va 1*.]*)

Xet x Spec(Z) .,

Under these identifications, the inverse image functor 6% is given by (see dia-
gram (24))
(E,F,T) — (E,F,tpoT)
Here t is the transformation defined in step (ii), and ¢z o7 denotes the following
composition :
tpoT: E — 1, F — i"j,F.
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Since ¢ is an isomorphism of functors, the inverse image functor % is an equiv-
alence, hence so is the morphism J 5. O

6. THE DEFINITION OF Xy

6.1. Let X be a scheme separated and of finite type over Spec(Z). Recall the

defining site Et= of the Artin-Verdier étale topos X¢¢ from section 4. For any
object U of Et~+ one has the induced topos

—~

aet = ?et/a = (Et?/a7 \an)

DEFINITION 9. For any object U of Et% we define the Weil-étale topos of U as
the fiber product

HW = aet xwet Spec(Z)W

This topos is defined by a universal property in the 2-category of topoi. As a
consequence, it is well defined up to a canonical equivalence. We point out two
special cases. If U = (X, X,,) = X is the final object we obtain the definition
of Xw and if U = (X, ) we obtain the definition of Ay,. The topos Xy will
play no role in this paper but Xy is our central object of study in case X is
proper and regular.

Note also that for X = Spec(Op) Definition 9 is consistent with Definition 7
by Proposition 5.5.

PROPOSITION 6.1. The first projection yields a canonical morphism
Yz Xw — Xet.
PROPOSITION 6.2. There is a canonical morphism
f%: Xw — Bg.
Proof. The morphism fz is defined as the composition
Xw — Spec(Z),, — Br

where the first arrow is the projection and the second is the morphism of
Proposition 5.3. (|

The structure of the topos X'y over any closed point of Spec(Z) is made explicit
below. Note that X ®z I, is not assumed to be regular.

PROPOSITION 6.3. Let Spec(F,) be a closed point of Spec(Z). Then
Xw Xspeemy., SPecFpler = (X @z Fp)w = (X @z Fp)iff x T

where (X @z Fp)w denotes the big Weil-étale topos of X @z Fp.
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Proof. The result follows from the following equivalences.

spect),, SPeCEr)er = Yot oy, Spec@hw Xgpee),, SPeclplen

g?et X

?Wx

Spec@),, DWe,
& Xt XSpec(@)., Spec(Fp)et Xspec(F,).. Bwe,
= (X @z Fp)et X By By,
= (X RzFp)w
The second equivalence, the fourth and the last one are given by Theorem 5.1,

Proposition 4.2 and Corollary 1 respectively. (|

COROLLARY 9. The closed immersion of schemes (X ®@zF,) — X induces a
closed embedding of topoi

(X Qz IF;D)W — Xw.

We denote by oo the closed point of Spec(Z) corresponding to the archimedean
place of Q. This point yields a closed embedding of topoi

Set = Sh(co) — Spec(Z)

et

This paper suggests the following definition.

DEFINITION 10. We define the Weil-étale topos of Xs as follows:
Xoow 1= Sh(Xs) X Brg.

The argument of Proposition 6.3 is also valid for the archimedean fiber.

PropPOSITION 6.4. We have a pull-back square of topoi:

X ——  Set

o -

Xw ——— Spec(Z),,
In particular i s a closed embedding.

Proof. The result follows from the following equivalences.

XW Xwet M =~ Xet Xmet Spec(Z)W XWec Set

cht X

Speccz),, D
>~ Xy X Speatd)., Set X set Br
= Sh(Xso) Xset Br
> Sh(Xs) X Br
= Aoo,W
Indeed, the second (respectively the fourth) equivalence above is given by The-
orem 5.1 (respectively by Corollary 6). ]
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6.2. We assume here that X is irreducible and flat over Spec(Z). Let us study
the structure of Xy at the generic point of X'. We denote by K (X') the function
field of the irreducible scheme X. Let K (X)/K(X) be an algebraic closure. The
algebraic closure Q/Q is taken as a sub-extension of K(X)/Q. Then we have
a continuous morphism Gk (x) — G-

DEFINITION 11. Let X be an irreducible scheme wich is flat, separated and of
finite type over Spec(Z). We consider the locally compact topological group

Wi (x) = Gr(x) X6o Wo
defined as a fiber product in the category of topological groups.

PROPOSITION 6.5. Let X' be an irreducible scheme wich is flat, separated and of
finite type over Spec(Z). There is a canonical morphism jz : Bwy vy = Xw.

Proof. The continuous morphism Wy (x) — G (x) induces a morphism

sm

Bwicxy = BGrexy = BGigny-

Here the second map is the canonical morphism from the big classifying topos
of Gk (x) to its small classifying topos, whose inverse image sends a continuous
GK(X) set E to the sheaf represented by the discrete G'i(xy-space E (see [14]
Section 7). The generic point of the irreducible scheme X and the previous
choice of the algebraic closure K (X)/K (X) yield an embedding By v < Kt
We obtain a morphism

BWK(X) — Xet'
On the other hand we have maps
Bwy vy — Bwy — Spec(Z)y,
and a commutative diagram

Bwxy, — Spec(Z)y,

| |

Xet — Spec(Z),,
The result therefore follows from the very definition of Xy . O

Unfortunately the morphism j3 is not an embedding. The structure of Xw at
the generic point is more subtle, as it is shown below. We assume again that
X is irreducible, flat, separated and of finite type over Spec(Z). The generic

point Spec(Q) — Spec(Z) and Q/Q induce an embedding
B"’m = Spec(Q)et — Spec(Z),,

The corresponding subtopos of Spec(Z)y,, is the classifying topos of the topo-
logical pro-group (see Proposition 5.2)

Wi g5 = {Wk/q,s, for Q/K/Q finite Galois and S finite}.
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Recall that we have
Bw

Wicras "= lim Bwy 4.5

where the projective limit is understood in the 2-category of topoi. In other
words, there is a pull-back

k-
Spec(Z)y,, —— Spec(Z),,

The generic point of the irreducible scheme X and an algebraic closure
K(X)/K(X) yield an embedding By v = Xoi. We obtain

)

XW X?ct é;:i(x) = SpeC(Z)W ><Spec(Z)et XEt X?ct B

sm
Gk (x)

= Spec(Z)y, X Spec(@)., Bgz(x)
= Spec(Z)W XW“ ng XBsGrg Bé}}i(){)

~ Bw

sm
Y K/Q,S Xng BGK(X)

sm
GrL/K(x)

L/K(X) runs over the finite Galois sub-extension of K(X)/K(X). For such
L we set L' := LN Q. Then the same is true for Bé}g, i.e. we have BZ" =
lim Bé}’;//@. Since projective limits commute between themselves, we have

The small classifying topos Bg”;(x) is the projective limit lim B where

sm N 1 sm . o -
Gr(x) XB&rS Bw = lim BGL/K(X) XMBG'Z// lim B

L PWr s

Wka,s 0
P N sm
=lim, s (BGL/K(X) XBE";,/@ Bw,q.5)
sm ‘e .
By Corollary 4, the fiber product BGL/K(X) XBETZ//Q BWL//Q,S is equivalent to

the classifying topos of the topological group Gk (x) XG0 Wi q,s where
the fiber product is in turn computed in the category of topological groups.
Note that Wy ,q,s — Gr+/g has local sections since G/ is profinite (see [14]
Proposition 2.1).

DEFINITION 12. Let K(X)/L/K(X) be a finite Galois sub-extension and let S
be a finite set of places of Q containing all the places which ramify in L' = LNQ.
We consider the locally compact topological group

Wikx),s == Gr/kx) XG0, Wijas
defined as a fiber product in the category of topological groups.

We have obtained the following result.
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PROPOSITION 6.6. Let X be an irreducible scheme wich is flat, separated and
of finite type over Spec(Z). We have a pull-back square of topoi

sm
lsz s BWL/K(X) s BGK(X)
Xw — X

where the vertical arrows are embedding.

7. COHOMOLOGY OF Xy WITH R-COEFFICIENTS

The fiber product topos Xy, as defined in section 6, is equivalent to the cat-
egory of sheaves on a site (Cy, J5) lying in a non-commutative diagram of

sites
(6?7 '-77) ( Spec(Z)? ~7l5)

[ [
(Bt Jot) L (Btger, Jer)

The site (Cy, J5) is defined as follows (see [24]). The category C is the
category of pairs of morphisms & — V «— Z, where U is an object of Et,
V is an object of Et (@) and Z is an obJect of T (@)’ The map U —
V' (respectively Z — V) is understood as a morphlsm U — f*V in Etz
(respectively as a morphism Z — *V in T).

The topology J= is generated by the covering families

{(U7~>V1<—Zv)~>(l/[~>V<—Z)7Z€I}

of the following types:

(a) U; =U, V; =V and {Z; — Z} is a covering family.

(b) Z Z,V; =V and {U; — U} is a covering family.

(o) {(U — V’ —ZNV>U—->V «— 2)} withld =U, and Z' — Z is obtained
by base change from the map V' — V of EtSpec(Z)

{U -V —2Z2')> U—-V «— 2)} with Z’' = Z, and U’ — U is obtained

by base change from the map V' — V of Etspec(z)

Then (Cs, J) is a defining site for the fiber product topos Xy . The topology
J= is not subcanonical.

DEFINITION 13. For any T -topos t : € — T, we define the sheaf of continuous
real valued functions on & as follows:

R := t*(yR)
Here yR is the abelian object of T represented by the standard topological group
R.

For an irreducible scheme X which is flat, separated and of finite type over
Spec(Z), we consider the morphism jz : Bw,,, — Xw defined in Proposition
6.5.
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PROPOSITION 7.1. Let X be an irreducible scheme wich is flat, separated and
of finite type over Spec(Z). We have R"jz R =0 for any n > 1.

Proof. Recall that the morphism j is defined by the following commutative
diagram of topoi.

BWK(X) L’ SpeC(Z)W

| dl

Kot AN Spec(Z),,
The site (BropWik(x), Jis) is a defining site for Bw,(xy» and we denote by a*,
b*, v* and f* the morphism of sites inducing the morphism of topos a, b, v and

f. The morphism j : Bw, ,, — €w is induced by the morphism of sites :
Cx —  BropWk(x)
U—-V —2) — a*UXgp+v b*Z
Note that one has an identification a*U X 4+« 0*Z = a* U Xp+~+yb* Z. Consider
the object of Tm whose components are all given by the action of Wy on
WQ/Wé =~ R:
(R,R, Idg) = f*ER
This object {*ER is a covering of the final object in TW for the local section
topology, hence
f*fER:(*—)*Hf*ER)—)(*—)*H*)

is a covering of the final object of C5 for the topology J=.
The sheaf R"jz R is the sheaf on (Cx, Jx) associated to the presheaf

Pjz. *R : Cx — Ab

(Z/{ -V «— Z) — H"(BWK(X),a*Z/{ Xa*f*Vv b*Z,R)
Since the object fFER defined above covers the final object of Cy, we can
restrict our attention to the slice category Cx/f5-ER. Let (U — V « Z) be
an object of Cx /f-ER, i.e. (U =V « Z) is given with a map Z — fLER in
Tm. We obtain a morphism
a*u Xa*f*V b*Z — WK(X)/W}((X)

in the category Brop, Wk (x), where the homogeneous space (WK(X)/W}((X)) =
R is seen as an object of BropWi(x)-
On the other hand the continuous morphism

Wiy — Wi(x)/Wix) = R
has a global continuous section. This gives an isomorphism in 7°
YWy /Wiciae) = YWy /YW (x)

and a canonical equivalence

BWK(X)/y(WK(X)/Wfl((X)) = BWK<X>/(ZJWK(X)/HW11<(X)) = By

1 .
K(x)
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Under this equivalence the object represented by
a: @ U X g pov b Z — Wiy /Wi (xy) =R

corresponds to the object of BW}( 0 represented by the subspace

a'(0) Ca*U Xg-pryv b* 2
endowed with the induced continuous action of W}q x)- Thus one has

H"(Bw, xy @ U Xqe gy b*Z,R) = H" By ' (0),R).

K(x)’

Therefore it is enough to prove
(34) H"(Byy, ,  Z,R) = H"(Byy | [y7,R x yZ) =0,

for any object Z of BTOPW}(( x) and any n > 1. We have two canonical equiv-
alences

BW}((X)/EW}((X) =7 and (BW}(<X)/yZ)/(EW11((X) xyZ)=T[yZ.
We obtain a pull-back square

T/yZ l—/>

‘| |

BW1 /yZ ;) BW1

K(x) K(x)

where all the maps are localization morphisms (local homeomorphisms of topoi
in the modern language). It follows easilly that this pull-back square satisfies
the Beck-Chevalley condition

Wl = 1K

Moreover the functor h’*, being a localization functor, preserves injective
abelian objects. We obtain

(35) R R"(1)A = R (I))h'* A

for any abelian object A of BW}{(X) /yZ and any n > 0. The forgetful functor
h* takes an object F of 7 endowed with an action of yW}((X) to F. Hence
R"(l,)A is the object R™(l,).A endowed with the induced lel((X)—action.

LEMMA 6. We have R"(IL)(R x yZ) =0 for any n > 1.

Proof. We consider the morphism I’ : 7/yZ — T. The sheaf R"(I)(R x yZ)
on T = (Top'®, Ji,) is the sheaf associated to the presheaf
P (I'))(R xyZ): Top'c — Ab
T +— HY"(T/y(ZxT),Rxy(ZxT))
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It is enough to show that H™(7 /yT’,R x yT") = 0 for any locally compact
topological space T = Z x T. By ([19] IV.4.10.5) we have a canonical isomor-
phism
H™(TyT',R x yT") = H™(T',C°(T",R))

where the right hand side is the usual sheaf cohomology of the paracompact
space T” with values in the sheaf C%(T”,R) of continuous real valued functions
on T'. Tt is well known that the sheaf C°(T’,R) is fine, hence acyclic for the
global section functor. The Lemma follows. O

Therefore the sheaf
R*R™(1)(R x yZ) = R™(I.)h"*(R x yZ)
vanishes for any n > 1, hence so does R"(1,)(R x yZ). The spectral sequence
HY By B[R x yZ2) = HP(Byy | JyZ.R % y2)
degenerates and yields an isomorphism

Hn(BW}{(X) LR xyZ)) = Hn(BW}((X)/yzv R x yZ)
for any n > 0. The sheaf l*(R x yZ) is given by the object I, (I@ xyZ) of T en-
dowed with the induced action of yW}(( x)» as it follows from (35). Furthermore,
one has
LR x yZ) = II"(R) = Homy(yZ,R)

where the right hand side is the internal Hom-object in 7 (see [19] IV Corollaire
10.8). The sheaf Hom(yZ, R) is represented by the abelian topological group
Homy,,(Z,R) of continuous maps from Z to R endowed with the compact-
open topology, since Z is locally compact. The compact-open topology on
Homr,,(Z,R) is the topology of uniform convergence on compact sets, since
R is a metric space. The real vector space Homr,,(Z,R) is locally convex,
Hausdorff and complete (see [6] X.16. Corollaire 3). Note that the action of
W}((X) on Homyp,,(Z,R) is induced by the action on Z, and that the group

Wi (x) 1s compact. By [14] Corollary 8, one has

H”(BW}((X) ,Hom,,(Z,R)) = 0.

In summary, for any locally compact topological space Z with a continuous
action of W}q){) and any n > 1, one has

H"(Byy, , [vZ,Rx yZ) = H"(Byy, (R x yZ))
= H"(Bws . Homz,,(Z,R))

=0

Hence (34) holds and R”(jz*)]f% =0 for any n > 1. O
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LEMMA 7. Let X be an irreducible scheme which is flat, separated and of finite
type over Spec(Z). If X is normal, then the adjunction map

fZR — iz ixfzR =/ R

is an isomorphism.
Proof. Firstly, we need to restrict the site C5. The class of connected étale
X-schemes (respectively of connected étale Spec(Z)-schemes) is a topologically
generating family for the étale site of X' (respectively of Spec(Z)). It follows
easily that the subcategory C% C Cx, consisting in objects (U — V « Z) of
C+ such that ¢ and V' are both connected, is a topologically generating family.
Then we endow the full subcategory C’7 with the induced topology via the
natural fully faithful functor

C/? — Cx.
Then (’LX is a defining site for the topos Xy .
The composite map fxojz : Bw, ,, — Xw — Bg is induced by the morphism
of topological groups W (xy — R. The canonical isomorphism j*?f*?f& ~ R
induces ~ }

iz xR =% R

On the one hand f*?]lé is the sheaf associated to the abelian presheaf

f%[@: C’f — Ab
U-V—Z) — Homc/y((u -V —2Z)(x— %« f*R))

where f*R denotes the object (R,R,Id) of Tsoectzy (with trivial action of the
Weil groups on R). For any object (U — V « Z) of C5, with Z = (Zo, Z, fu),

one has

f%ﬂé(u -V 2)= Homcly((l/{ >V 2)(x—* f*f&))
— Hostpec(Z) (Z,fR)
= HomBTDpW@ (Zo, R)
= I?[OTI’LTQP(Z()/VV@7 R)
One the other hand, the morphism jy is induced by the continuous functor:

C — BropWi(x)
U=V —Z) — a*U Xgepry b Z

Hence the direct image j, is given by
J.RU =V — Z) = Homp,,, Wy, (U Xaepoy b Z,R).
Here the topological group R is given with the trivial action of Wi (x). We set
Uy :=a*U and Vg := a™ f*V.

Note that Uy (respectively Vp) is given by the finite G g (x)-set (respectively the
finite Gg-set) corresponding, via Galois theory, to the étale K (X')-scheme U x »
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Spec K (X) (respectively to the étale Q-scheme V ® Q). Here, Uy (respectively
Vo) is considered as a finite set on which Wy () acts via Wi (xy — Gg(x)
(respectively via Wx(xy — Gq). Finally, Wk (x) acts on the space Zy := b*Z
Since Wi (xy acts trivially on R, one has

JwRU =V — Z) = Homp,,, Wi, (@ U Xq+ gy b*Z,R)
= HomTop((Uo XV Zo)/WK(;(),R).

(1) THE MAP }5R — jx, R IS A MONOMORPHISM.
The morphism f*?]f% — jy*f& is given by adjunction. It is induced by the
morphism of presheaves on C’? given by the functorial map

(36) Homrop(Zo/Wa,R) — Homrep((Uo Xviy Zo)/ Wk (x): R)
which is in turn induced by the continuous map
(37) (Uo xvy Z0) /Wi (x) — Zo/Wa.

Let (U — V < Z) be an object of C%.. Hence U and V' are both connected.
Since U and V are both normal, the schemes U x x Spec(K (X)) and V X Spec(zy
Spec(Q) are connected as well. By Galois theory, the Galois groups Gk (x) and
Gq act transitively on Uy and Vj respectively. Hence the Weil groups Wi ()
and Wyq act transitively on Uy and V; respectively.

We have maps of compactified schemes

U — X — Spec(Z) and U — V — Spec(Z).

We consider the subfield L(U) of K(U) consisting in elements of K (U) that are
algebraic over Q, i.e. we set

LU) :=KU)NQ.

Note that ¢ is normal and connected, hence irreducible, so that its function
field K (U) is well defined. We consider the arithmetic curve Spec(Op«yy). Since
U is normal, we have a canonical map

Uu — SPGC(OL(M)).

We denote by U’ the (open) image of U in Spec(Opy). Then we have a
factorization

U— U —V — Spec(Z)

since V' — Spec(Z) is étale.
The group Wi (x) acts transitively on Uy, hence the choice of a base point
up € Up induces an isomorphism of Wi (x)-sets :

a:Uo = Wixy/Wkwy = Grxy/Grw)-
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We fix such a base point ug € Uy. Then one has a 1-1 correspondence

(Uo x Z0)/Wikwxy — Zo/Wkwy = Zo/Wrw
(ug, 2) — z

where the equality Zo/Wg ) = Zo/Wrw) follows from the fact that the image
of Wk @) in Wy is precisely W, y).
We consider now the commutative diagram of topological spaces

37
(Uo xv, Z0) /Wi (x) _en Zo/Wo

(Uo x Zo) /Wi () %’ Zo/Wrw

where 7 is injective and s is surjective. We denote by vy the image of ug € Uy
in Vy (note that & — V induces a map Uy — V).

Let z € Zy/Wgy. There exists w € Wy such that w.z goes to vy under the
Wg-equivariant map Zy — Vp, since Wy acts transitively on V4. Then one has
w.z =z, (ug,w.z) € Uy Xv, Zo, and

soaoi(ug,w.z) =soa(uy,w.z)=s(wW.z) =%

where * stands for the orbit of some point * under some group action. Using
the previous commutative diagram, this shows that the map (37) is surjective
whenever U and V are both connected. Hence the map (36) is injective for any
object (U — V « Z) of C%. In other words the morphism of presheaves on C%

foR — jz, R
is injective. Since the associated sheaf functor is exact, the morphism of sheaves
fyR — jz. R

is injective.
(1) THE MAP f-R — jz, R IS AN EPIMORPHISM.
One has

foR(U — % — Z) = Homz, (U x 2;f5R).

Here we denote by * the final object EtW' Moreover, we denote by elf
(respectively by €Z) the sheaf on the topos Xy associated to the presheaf
represented by (U — x < *) (respectively by (x — * « Z)), where * stands
for the final object of the corresponding site. Finally, the product elf x €Z is

computed in the topos Xy. By adjunction, we have
f*?f&(u — % Z) = Homz, (U x eZ; f*?f&)
= Homz,, jq(eU X eZ,eU % f*ER)
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where we consider the slice topos Xy /eld. On the other hand we have

Xy /e = (X XSpec(Z)., Spec(Z)y,)/eU
= (fet/yl/l) XSpEC(Z)Ct SPTC(Z)W
= Uet Xgpeer,, SPeC( L)y
=: Uy

~

= uet XUét Uét XWBL Spec(Z)W

~ /
= Uet, xUét UW

where U’ C Spec(Opy)) is defined as in the proof of step (i). The last equiv-
alence above is given by Proposition 5.5. Hence the fiber product site C;; for
Uet Xy, Ul given by the sites Ety, Etys and Ty, is a defining site for the
topos Uyy. Then the object eld x €Z of

yw/é‘u :UW %L{Ct ><Ue/t U{//V

is the sheaf associated to the presheaf on Cp represented by (x — % «— Z)
where Z = (Zy, Z,, f») is seen as an object of Ty by restricting the group of
operators on Zy and Z, for any place v of Q. Moreover, the object el x iz R

of Xy /el = Uy is precisely f; R. Tt is the sheaf associated to the presheaf
fi, R on Cy represented by (* — % «— f;;,R). Therefore, we have

faf&(* — % — Z) = Home_(( — % — Z),(* = * — fr.R))
= Homr,, (2, fz},]f%)
= Hompr,,w, ) (Zo, R)
= Homrgop(Zo/Wrw),R)

By the universal property of the associated sheaf functor, we obtain a map
from

7 R(x — * — Z) = Homrop(Zo/Wrw), R)
to the set
£, R(x — % «— Z) = Homyy, (U x £Z,f, R)
= Homz,, jq (U X eZ,eU % f*?f&)
= Homz (U x €Z, f*?f&)
=fZRU — x — 2)
Composing this map f;, R(x — % «— Z) — f*?}f%(?/{ — % « Z) with
(38) e RU = — 2) — jg, RU = + — 2),
we obtain the natural bijective map from

7 R(x — * — Z) = Homrop(Zo/ Wiy, R)
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to the set
jf* R(Z/{ — X — Z) = HOmTop(Z()/WL(u),R).

It follows that the map (38) is surjective.
It remains to show that the map

(39) FoRU =V — 2) — jz, RU -V — 2)
is surjective when V' is not necessarily the final object. For any object (U —
V — Z) of C%;, we consider the following commutative diagram

FRU - —2) -2 o RU =+ — 2)

| d
f*?R(UHVHZ) _G9, Jz. RU =V — 2Z)

We have proven above that the map (38) is surjective. The vertical arrow p is
the natural map from

. RU = # — Z) = Homp,,, Wy, Uo % Zo,R)
to the set
j?* R(Z/[ =V« Z) = HomBTopWK(X)(UO X Vo ZOvR)7

which is surjective as well. Indeed, Uy xv, Zp is an open and closed Wi (x)-
equivariant subspace of Uy x Zy, hence any equivariant continuous map Uy Xy,
Zy — R extends to an equivariant continuous map Uy x Zy — R. It follows
immediately from the previous commutative diagram that the map (39) is
surjective, for any object (U — V' « Z) of C%. Therefore the morphism of

sheaves f*?f& — J7. R is surjective. (|
THEOREM 7.1. Let X be an irreducible scheme wich is flat, separated and of
finite type over Spec(Z). If X is normal then the morphism
f: H"(Bg,R) — H"(Xw,R)
is an isomorphism for any n > 0.
Proof. The Leray spectral sequence
H?(Xw, Rij%,R) = H" By, ., R)
degenerates by Proposition 7.1. This shows that the canonical morphism
H"(Xw,R) = H"(Xw, j%,R) — H"(Bw,,R)

is an isomorphism, where the first identification is given by Lemma 7. These
cohomology groups can be computed using the spectral sequence associated
with the extension

IHW}((X) — Wgwx)y = R—1.
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Indeed, localizing along ER, we obtain a pull-back square

q ~
b —— T=Ba/ER

(40) p/l pl

q
Bwyixy —— Br

Bwl

This gives an isomorphism
p*Rn(q*) o~ Rn(q;)p/*
for any n > 0. The argument of the proof of Proposition 7.1 shows that

R”(q;)]f% =0 for any n > 1. Hence R"(g.)R = 0 for any n > 1. Moreover q is
connected, i.e. ¢* is fully faithful, hence we have

R = ¢.¢*'R=R.
Therefore, the Leray spectral sequence given by the morphism ¢
H'(Bg, R’ (q.)R) = H'" (B, +,,R)
degenerates and yields

H"™(Bg,R) = H"(BR, ¢:R) = H”(BWK(X),]R)
for any n > 0. The result follows. O

8. COMPACT SUPPORT COHOMOLOGY OF Xy WITH R-COEFFICIENTS

Throughout this section, the arithmetic scheme X is supposed to be irreducible,
normal, flat, and proper over Spec(Z).

8.1. THE MORPHISM v : X — X Recall the notion of étale X-scheme
defined in section 4. An étale X-scheme is in particular a topological space so
that it makes sense to speak of connected étale X-schemes. Theorem 7.1 yields
the following result.

COROLLARY 10. For any connected étale X-scheme U, the morphism

f: H"(Bg,R) — H"(Uw,R)
is an isomorphism for any n > 0. In particular, one has H”(HW,R) =R for
n=0,1 and H*(Uw,R) =0 for n > 2.

Proof. This is clear from the fact that an étale X-scheme U = (U, D) is con-
nected if and only if the scheme U is connected, and Theorem 7.1 applies to
U. |

Recall that v : Xw — X is the projection induced by Definition 9.

PROPOSITION 8.1. The sheaf R"y%,(R) is the constant étale sheaf on X as-

sociated to the discrete abelian group R for n = 0,1 and R"y5,(R) = 0 for
n > 2.
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Proof. For any n > 0, Ry, (R) is the sheaf associated to the presheaf

U — H”(?W/V%H,R)

Hence the result follows immediately from Corollary 10, since Xy /'y%lj
Uw .

O R

8.2. THE MORPHISM 7Yoo : Xoo,w — Xoo.

8.2.1. If T is a locally compact space (or any space), one can define the big
topos TOP(T) of T as the category of sheaves on the site (T'op/T, J,p) where
Jop is the open cover topology. It is well known that the natural morphism
TOP(T) — Sh(T) is a cohomological equivalence. The following lemma gives
a slight generalization of this result.

LEMMA 8. Let T be an object of Top. Let T /7 be the big topos of T and let
Sh(T) be its small topos. For any topos S, the canonical morphism

f:T/px8— Sh(T) xS
has a section s such that s* = f,.

Proof. We first observe that one has a canonical equivalence
TOP(T) := (Top/T, Top) =T /1,

where TOP(T) is the big topos of the topological space T'. In what follows,
we shall identify 7 /7 with TOP(T). The morphism f’ : 7 /7 — Sh(T) has a
canonical section s’ : Sh(T) — T /1, hence the map

f=(f,1ds) : T/t xS — Sh(T) x S

has a section
s:=(s',Ids) : SW(T) xS — T /r x S.

Moreover, we have s"* = f. hence a sequence of three adjoint functors
1% !/ Ix /
f ) f* =S Y S*.

The functor f. = s’* is called restriction and is denoted by Res. The functor
f'* is called prologement and is denoted by Prol.

The category Op(x) of open sets of the one point space is a defining site for
the final topos Set. The site (S, Jean) and (7 /1, Jean) can be seen as sites for
the topoi & and 7 /r respectively, where J.q,, denotes the canonical topology.
Then the morphisms f’ and s’ are induced by the left exact continuous functors
f* and s™ respectively. A site for 7 /7 x S (respectively for Sh(T) x §) is
given by the category C of objects of the form (F — * < S) (respectively by
the category C of objects (F — % «— S)). Here S is an object of S, F is an
étalé space on T, F is a big sheaf on T and * is the set with one element. The
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categories C' and C both have an initial object () — () < @)). The morphism of
topoi f is induced by the morphism of sites

ft: C — C
(F—=%«—8) +— (Prol(F)—x<J5)

and the morphism s is induced by the morphism of sites

s71: C — C
(F=%x«S8) — (Res(F)—x<29)

Let £ be a sheaf of 7/ x S. Then one has
JoL(F — % «— 8) = L(Prol(F) — % «— S)

for any object (F — % « S) of C. On the other hand, s*£ is the sheaf
associated with the presheaf

sPL: C — Set

where the direct limit is taken over the category of arrows
(F — % — S) — (Res(F) — % < 5.

But this category has an initial object given by (Prol(F') — % <« S), since Prol
is left adjoint to Res. We obtain

sTIL(F — % « S) = L(Prol(F) — % « 9).

Hence s~'L is already a sheaf isomorphic to f,£. This identification is func-
torial hence gives an isomorphism of functors

e &2 8™

O

COROLLARY 11. Let A be an abelian object of T /7 x S and let A’ be an abelian
object of Sh(T) x §. We have the following canonical isomorphisms:

H™(T )7 x S, A) = H"(Sh(T) x S, f.A)
H™(SK(T) x S, A') = H(T /7 x S, f* A').

Proof. By Lemma 8, the Leray spectral sequence associated with the morphism
f:T/r xS — Sh(T) x S degenerates since f, = s* is exact. This yields the
first isomorphism

HY (T /7 xS, A) =2 H"(Sh(T) x S, fo.A) = H"(Sh(T) x S,s*A).
Applying this identification to the sheaf f*A’, we obtain
H (T)r xS, f*A) =2 H"(Sh(T) x S, A")
Indeed, we have f o s = Id hence

f*f*A/gs*f*Alg(fos>*AlgA/
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COROLLARY 12. Let S be any topos. We denote by p1 : T xS — T and
p2: T xS — S the projections. For any abelian object A’ of T x S, one has

H™"(T xS, A') = H"(S, p2.A").
For any abelian object A of T, one has

H™(T x S,p1A) =2 H"(S, A(x)).
Proof. The topos 7T is the big topos of the one point space {x} while Sh(x) =
Set is the final topos. The map

F:TxS—>Sh(x)xS=8SetxS=§8

is the second projection po. Hence one has
(41) H™(T xS, A") = H"(S,p2..A")

as it follows from Corollary 11.
There is a pull-back square :

TxS 2., 8

(42) pll l
7T —Z . Set

The functor er* has a right adjoint, so that er* commutes with arbitrary
inductive limits and in particular with filtered inductive limits. Hence the
morphism ez is tidy (see [25] C.3.4.2). It follows that the Beck-Chevalley
natural transformation

efg o ey = Py Op?
is an isomorphism (see [25] C.3.4.10). But the sheaf
p2:p1 A = eser A

is the constant sheaf on S associated with the abelian group A(x), since ez, is
the global section functor and e% is the constant sheaf functor. Applying (41)
to the sheaf pj.A, we obtain

H™(T x 8,p1A) = H"(S,p2upiA) = H"(S, eserA) = H"(S, A())
for any n > 0. O
LEMMA 9. Let U be a contractible topological space and let
q: 7T xShU) —T
be the first projection. Then one has
R"(¢.)¢*R =0 forn >1.
Proof. The sheaf R"(q*)q*R is the sheaf associated to the presheaf

P"(¢)¢'R: Top — Ab )
K +~— H"(T xSh(U),q*yK, ¢*R)
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Recall that Top denotes the category of locally compact topological spaces.
The category Top® of compact spaces is a topologically generating family of
the site (Top, Jis). It is therefore enough to show

(43) H™(T x Sh(U),q*yK, q*R) = H"((T x Sh(U))/q*yK,q*R x ¢*yK) =0
for any compact space K and any n > 1. We have immediately
(T x Sh(U))/ gy =T JyK x Sh(U).

We denote by gk : 7 /yK x Sh(U) — 7 /yK — T the morphism obtained by
projection and localization. Equivalently g is the composition

T/yK x Sh(U) = (T x Sh(U))/q+yx — (T x Sh(U)) — T.
We consider also the map
s:Sh(K) x Sh(U) — T /yK x Sh(U)
defined in Lemma 8. Then the following identifications
H™(T x Sh(U), ¢*yK,R) = H*(T JyK x Sh(U), ¢ R)
~ H"(Sh(K) x Sh(U), s*¢iR)
>~ H"(Sh(K x U), 5 ¢ R)
are induced by the following composite morphism of topoi
5:Sh(K xU) — Sh(K) x Sh(U) — T JyK x Sh(U).

Indeed, the first map Sh(K x U) — Sh(K) x Sh(U) is an equivalence since
K is compact, and the second map induces an isomorphism on cohomology by
Corollary 11. The commutative diagram

Sh(K x U) —— Sh(K) x Sh(U) —>— T /yK x Sh(U)

(44) lpl l lqk

Sh(K) —— T/k S T
shows that the sheaf §*q}(11~§ on the product space K x U is the inverse image
of the sheaf CY(K,R), of continuous real functions on K, along the continuous
projection p; : K x U — K. In other words, one has
55 R = piC°(K,R).
Consider the proper map
pe: K xU — U.
By proper base change, the stalk of the sheaf R"™(ps.)piC(K,R) on U at some
point u € U is given by
(B (p2 )i CO (K R)) = H' (p7 ! (), piCO(K.R) |, 1)) = H™ (K, CO(K, R)).
This group is trivial for any n > 1. Indeed K is compact, in particular para-
compact, hence C°(K,R) is fine on K. Thus we have

R"(p2.)piC°(K,R) = 0 for any n > 1.
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Applying again proper base change to the proper map K — #*, we see that
p2.piCO(K,R) is the constant sheaf on U associated with the discrete abelian

group
C%(K,R) := H°(K,C"(K,R)).

The Leray spectral sequence associated with the continuous map K x U — U
therefore yields

Hn(Sh(K X U),pTCO(K, R)) = Hn(UaPZ*pikCO(Ka R)) = Hn(Ua CO(Kv R))
for any n > 0. But U is contractible hence H"(U,C°(K,R)) = 0 for n > 1,
since sheaf cohomology with constant coefficients of locally contractible spaces
coincides with singular cohomology, which is in turn homotopy invariant. We
obtain

H™(K x U,piC°(K,R)) = H"(U,C°(K,R)) = 0
for any n > 1. The result follows since we have
H™(T x Sh(U), ¢*yK,R) = H"(Sh(K x U),5*q}R)
~ " (Sh(K x U), piC°(K,R))
=0
for any compact space K and any n > 1. O
8.2.2. We still denote by X an irreducible normal scheme which is flat and

proper over Spec(Z). Recall that X, is the topological space X" /Gg, and
that the Weil-étale topos of X is defined as follows (see Definition 10):

Xoo,W = B]R X Sh(.)(oo)
PropPOSITION 8.2. Consider the projection morphism
Yoo : Xoo,w = Br X Sh(Xs) — Sh(Xs).

If R denotes the constant sheaf on X associated to the discrete abelian group

R we have
~ R n=0,1
R"yoor (R) = ’
Yoox (R) {0 n> 9

and

" w]Z n=0
R ’Yoo*(Z):{O n>1

Proof. The sheaf R™y,..(R) is the sheaf on the topological space X, associated
to the presheaf

P"(Yoos)(R) 1 Op(Xa) — Ab i
U +—  H"(Br x Sh(Xx),U,R)

where Op(X) is the category of open sets of X. One has
H"(Bg x Sh(Xs),U,R) := H"(Bg x Sh(Xs)/U,R) = H"(Bg x Sh(U),R).
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The family of contractible open subsets U C X, forms a topologically gener-
ating family of the site (Op(Xx), Jop), since X is locally contractible. It is
therefore enough to compute the groups H™(Bg x Sh(U), R) for U contractible.
For any contractible open subset U C X, we consider the following pull-back
square :

T x Sh(U) —*—

(45) l’l ll

Bg x Sh(U) —*— Bg

Here the vertical arrows ! and I’ are both localisation maps (recall that
Br/ER 2= T), while p and and ¢ are the projections. This yields a canoni-
cal isomorphism

(Rp.) = (Rq.)l"
By Lemma 9, we obtain
I*(R"p,)R = (R"¢,)I""R = (R"¢,)¢"R = 0

for any n > 1. It follows immediately that (R"p,)R = 0 for n > 1, since
I*: Br — T is the forgetful functor (forget the yR-action).

The contractible topological space U is connected and locally connected, hence
so is the morphism of topoi Sh(U) — Set. Since connected and locally con-
nected morphisms are stable under base change (see [25] C.3.3.15), the first
projection p : Bg x Sh(U) — Bg is also connected and locally connected. In
particular, p* is fully faithful hence we have

pR:=ppR=R
The Leray spectral sequence associated to the morphism p therefore yields
(46)  H"(B x Sh(U),p'R) = H"(Bg,p.p"R) = H"(Bg, R).

But one has H"(Bg,R) =R for n = 0,1 and H"(Bg,R) = 0 for n > 2. Hence
the sheaf R"y.0.(R) is the constant sheaf on X, associated to the discrete
abelian group R for n = 0,1 and R”(%o*)f& =0 for n > 2.

To compute R™yo0«(Z) recall that for any group object G in a topos £ and any
abelian G-object A there is a spectral sequence

HP(HI(E/G*, A)) = HPT9(Bg, A).

Applying this to G = Rin & = 7 x Sh(U) we note that the classifying topos of
G is just Bg x Sh(U) by [10]. Hence for A = Z we obtain a spectral sequence

HP(HY(T /R* x Sh(U),Z)) = HP(HI(Sh(R®* xU), Z)) = H"+9(Bg x Sh(U), Z)

where we have again used Corollary 11 and the fact that the spaces R? are
locally compact. Now if U is contractible so is R?x U and HI(Sh(R®*xU),Z) =
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Z (resp. 0) for ¢ = 0 (resp. g > 0). The spectral sequence degenerates to an
isomorphism
/ =0
HP (Bg x Sh(U), Z) = HY(C(Z)) = { v
0 p>0

where C'(Z) is the complex associated to the constant simplicial abelian group
Z which is quasi-isomorphic to Z[0]. The sheaf Ry (Z) is associated to the
presheaf U — HP(Bgr x Sh(U),Z) and hence takes the values in the statement
of Proposition 8.2. O

By Proposition 8.2 the Leray spectral sequence for 7., induces a long exact
sequence

= HY(Xo,R) = H (Xoow,R) = H (X, R) — -
which decomposes into a collection of canonical isomorphisms
(47) H' (X w,R) = H (X, R) ® H 1 (X, R)

since Yoo is canonically split by the morphism of topoi o : Sh(Xs) — Bgr X
Sh(X5) which is the product with Sh(X,) of the canonical splitting Set —
T — By of the canonical projection Bg — 7 — Set. Note here that o*
applied to the adjunction map R = 7;0%0,*]@ — R is an isomorphism R =
R~ o*R >~ R.

8.3. THE FUNDAMENTAL CLASS. The map f3 : X — Bg induces an isomor-
phism . -

% Hom (R, R) = HY(Bg,R) — H' (Xw,R).
DEFINITION 14. The fundamental class is defined as follows:

0 = f(lde) € H' (Xw,R).
We consider the sheaf R as a ring object on the topos Xy . For any R-module
M on Xy, one has (see [19] V.3.5)
Eat?(Xw,R,M) = Eaty(Xw,Z, M) = H"(Xw,M).
Hence the Yoneda product
Extl(Xw,R,R) x Bxt?(Xw,R, M) — Eat?™ (Xw,R, M)

gives a morphism

H'(Xw,R) x HY( Xy, M) — H" (X, M).
Thus the fundamental class § € H' (X, R) defines a R-linear map of R-vector
spaces
(48) UG:H”(?W,M) —>Hn+1(yw,M).
Furthermore, the étale sheaf R"vyz (M) is the sheaf associated with the
presheaf

*
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For any U étale over X' we define 6 to be the pull-back of 6 in H'(Uw,R).
Then cup product with the fundamental class f;; gives a map H" (Uw, M) —
H" Uy, M), which is functorial in . In other words, we have a morphism
of presheaves P"yz (M) — P”H*yz*(M ). Applying the associated sheaf
functor, we obtain a morphism of sheaves

(49) U6 : Ry, (M) — R" oz (M)

)

More precisely, the map (48) is induced by a morphism of complexes
(50) U0 : Rl (M) — RI'g  (M)[1].

Consider now the complex of étale sheaves Ryz , (M). For any étale X-
scheme U/, the complex of abelian groups Ryz (M) (U) is quasi-isomorphic
to Rl (M). Hence cup product with the canonical classes 6;; yields a mor-
phism of complexes of sheaves

(51) U0 : Ryx (M) — Ryg  (M)[1]

The morphisms of complexes (50) and (51) above are well defined in the corre-
sponding derived category. Moreover, the morphisms (48), (49), (50), and (51)
are functorial in M.

Finally, the morphism (51) is compatible with (48) in the following sense.
Under the canonical isomorphisms H"(Xw, M) = H"(X., Ry ,(M)) and

H" W (Xw, M) = H"(Xe, Ryz, (M)[1]), the morphism induced by (51) on
hypercohomology groups

(52) H" (Xet, Ry, (M)) — H" (Xer, Ry, (M)[1])

coincide with the morphism (48).
Consider now the open-closed decomposition

0 Xog — Xep ¢+ Sh(Xso) @ Uso
given by Corollary 4.1. The morphism 7 : Xy — X gives pull-back squares

Yx
Xy —— Xt

and
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The second square is indeed a pull-back, as can be seen from the following
commutative diagram:

Koo w —=— Sh(Xy) —— Sh(co) = Set

N !

Xw =, X ——— Spec(Z),,

The right hand side square and the total square are both pull-backs by Corollary
6 and Proposition 6.4 respectively. It follows that the left hand side square is
a pull-back as well.

THEOREM 8.1. There is an isomorphism Ry, (AR) = R forn=0,1, and
R"y%,(¢R) =0 for n > 2. Under these identifications, the morphism

U : R0y, (¢R) — R'yz, (¢1R)
gwen by cup product with the fundamental class, is the identity of the sheaf
R
Proof. We have an exact sequence of abelian sheaves on Xy :
OHQZ)!RHRHZ}X)*RHO
Applying the functor Ry, , we obtain an exact sequence of étale sheaves
0— W*QSIR — W*R — 'yy*ioo*R — RI’Y}*(@R) — Rlyy*(ﬂé) — Rl'yy*(ioo*f&) — I
But we have canonical isomorphisms
(53)  R™yz,(i00xR) = R™ (Y3, i00x )R = R™ (UnoYoor )R 2 Unow R™ Yook (R)

for any n > 0, since the direct image of a closed embedding of topoi is exact.
Therefore, by Proposition 8.1 and Proposition 8.2, we obtain an exact sequence

0— 'yf*gb!]f@ — R — UooxR — leyy* (qb!R) — R — UgoxR — R27?*(¢1R) — 0

and R”’)T*(@R) =0 for n > 3. The map R — uy.R is surjective since u is
a closed embedding. Hence we have an exact sequence

0— R"W*(qﬁgﬂé) — R — ussR — 0

for n = 0,1 and R”fyy*(qh[@) = (0 for n > 2. The first claim of the theorem
follows. o -

For any connected étale X-scheme U, we have a commutative square of R-vector
spaces

HUw,R) —" H'Uw,R)

I I

HO(Bg,R) =R —Z%, H1(Bz,R) =R

where the vertical maps are isomorphisms by Corollary 10. The R-linear map

(54) UIdg : H°(Bg,R) = R — H'(Bg,R) = Homeont (R, R)
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sends 1 € R to Idg. Under the identification
HY(Bg,R) = Homeon: (R, R) = R
which maps f: R — R to f(1), the morphism (54) is the identity of R. Hence
the morphism
Uy : H'(Uw,R) =R — H'Uw,R) =R

is just the identity, for any connected étale X-scheme . It follows that the
morphism of sheaves defined in (49)

(55) Ul : R, (R) =R — Ry, (R) =R
is the identity of the sheaf R. )
The same argument is valid for the sheaf i,,R. The composite morphism

p: Xoow = Br X Sh(Xsx) — X — Bg
is the first projection. We consider the fundamental class

000 :=p*(Idg) = i%(0) € H' (X, w, R).
Then the morphism

UB : RO, (i0osR) — R, (100« R)
coincides, via the canonic:iml isomorphism (53), with the morphism
Uoox B2 Voox (R) — Usox R Yoo« (R) induced by
Ul : RO%O*(R) — leyoo*(]f%).
But for any contractible open subset U C X, one has a commutative square
Uboo

HO(XOO,Wa Ua R) I— HI(XOO,W, Ua R)

I I

H(Bg,R) =R 2%, HY(Bp,R)=R

where all the maps are isomorphisms, as it follows from (46). Hence the map

Uhso : R = Yoox (R) — Rl'ysex(R) = R
is the identity, and so is the morphism
(56) UB = RO, (icosR) = toosR — R'55, (i00xR) = UosR.
The morphism (49) is functorial hence Uf gives a morphism of exact sequences
from ~ B B

0= R >R —i0.R—0

to ~ R ~
But the morphisms (55) and (56) are both given by the identity map, hence so
is the morphism

Uf : ROy, (4R) = pR — Ry, (¢1R) = iR,
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DEFINITION 15. For any abelian sheaf A on Xy, the compact support coho-

mology groups H:(Xw,R) are defined as follows:
H(Xw,A) = H' (Xw, 1 A)

THEOREM 8.2. Assume that X is irreducible, normal, flat and proper over
Spec(Z). The compact support cohomology groups H!(Xw,R) are finite di-
mensional vector spaces over R, vanish for almost all i and satisfy

> (=1)"dimg Hi(Xw,R) = 0.
=
Moreover, the complex of R-vector spaces

ue uo

2 (X, R) =5 HI (X, R) s
is acyclic.
Proof. Consider the Leray spectral sequence
HP(Xer, Rivg, (9R)) = HPM(Xw, ¢1R)
given by the morphism 7. This spectral sequence yields
H°(Xw, pR) = H*(Xer, piR) = 0

and a long exact sequence

0O —— Hl(yetﬂRo’YE*(¢lR)) - HI(TW7¢'R) —— HO(Tethl,yf*(¢!R))

|

T H2(y€t7R0’YE*(¢IR)) - HZ(TW7¢'R) I Hl(?et7R1’YE*(¢!R))

|

. H3(Xot, ROv%,(AR)) —— H3(Xw, dR) ——— H?(Xer, R'y5, (01R))

. —— H' (X, R(7%,)¢R) ——

Here the vertical maps U are given by cup product with the fundamental class.
More precisely, the morphism (51)

Ryz . (0R) — Ryz (6R)[1].

induces a morphism of spectral sequences. This morphism of spectral sequences
induces in turn these vertical maps Uf. It follows that the composite map
(57)

H'(X oy, Ry, ($1R)) — H' (X, iR) 2% HIHL (X, $R) — H (Xop, Ry, (0R))

is induced by the isomorphism of sheaves

RO7%.($1R) = piR =% R'yg, (4R) = oiR.
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Hence the map (57) is an isomorphism for any ¢ > 0, by Theorem 8.1. This
yields a section to the map

H* Y Xy, R) — H (Xer, R 5, (1R)).

It follows that the long exact sequence above decomposes into a collection of
canonical isomorphisms

(58) H'(Xw,¢R) = H (Xey, R, (4R)) & H ™ (Xep, R' 5, (01R))
(59) ~ H' (X, pR) & H ™' (X, o R)
(60) = Hé(Xeth) @Hé_l(‘){ehR)

for any ¢ > 1. By Proposition 4.3, the R-vector space H!(X.;, R) is finite
dimensional and zero for i large. Hence we have

dimg H' (X, R) = dimp H! (X, R) + dimp H! "' (X, R)

and

> (—1)" dimg Hi(Xw,R) = 0.

i€Z
Under the identification (60), the morphism given by cup product with the
fundamental class

Hi(Xw, R) =% HIY (X R)
is obtained by composing the projection with the inclusion as follows:
(61) Hi(Xw,R) — H{(Xer,R) — HI (X, R).
It follows immediately from (60) and (61) that the complex of R-vector spaces
2 H (A, R) 2L I (a0, R) 2L
is acyclic. (|

Remark 1. For any ¢ > 1, there is a canonical isomorphism of R-vector spaces
Hi{(Xw,R) = H(X.,R) @ H (X, R)

PROPOSITION 8.3. Assume that X is irreducible, normal, flat and proper over
Spec(Z). Then one has

> (=1)%i dimg H (X, R) =Y " (~1)""! dimg H}(Xet, R)
€L 1E€EZ
=1+ (~1)"dimg H' (X, R)
i€Z
=1+ (-1)'dimg H (X", R)*
i€Z
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Proof. The first equality (respectively the second) follows from Remark 1 (re-
spectively from Proposition 4.3). To prove the third, we consider the morphism
of topoi
(7%, 7wE%) : Sh(GRr, X*") — Sh(Xx)

given by the quotient map 7 : X" — X% /Ggr, where Sh(Gg, X") is the
topos of Gr-equivariant sheaves on the space A*". The constant sheaf R on
X" is endowed with its Gg-equivariant structure. For any n > 1, the stalk of
R"(7¢®)R at some fixed point x € X (R) C X is the abelian group H"(Gg, R),
which is zero since R is uniquely divisible. This gives

R"(7¢")R =0 for n > 1
and a canonical isomorphism
H"(X5,R) =2 H"(Sh(Ggr, X°"),R)
for any n > 0. But the spectral sequence
H?(Gg, HY(X*" R)) = HPT9(Sh(GR, X*"),R)
degenerates and gives an isomorphism
H"(Sh(Ggr, X°"),R) = H°(Gg, H" (X", R)) = H"(X"",R)"

for any n. The result follows. O

9. RELATIONSHIP TO THE ZETA-FUNCTION

9.1. Morivic L-FUNCTIONS. We first recall the expected properties of motivic
L-functions [36]. For any smooth proper scheme X/Q of pure dimension d and
0 < ¢ < 2d one defines the L-function

L(h'(X),s) = [] Lp(h(X), )

as an Euler product over all primes p where
Ly(h'(X),s) = Bp(h'(X),p~") ™"
and
P,(h'(X),T) = detg, (1 — Frob, ! - T|H (Xg,.,, Q1)'?)
is a polynomial (conjecturally) with rational coefﬁcients independent of the
prime [ # p. By [9] this product converges for #(s) > 5 + 1. Set

Tr(s) = w—s/2r(§); Te(s) = 2(2m) T (s)

and
Loo(B(X),s) = [[ Tc(s = )" - T] Te(s —p)"" " Ta(s —p+ )"~
p=3

p<q
where H'(X(C),C) = @, ,_, H" is the Hodge decomposition,

hP4 = dimg HP9; P = dimg (HPP)Fe=t (=17
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and F is the map induced by complex conjugation on the manifold X (C).
Here the product over p = 3 is understood to be empty for odd i. The com-

pleted L-function

A(h'(X),s) = Loo(h'(X), s)L(h'(X), 5)
is expected to meromorphically continue to all s and satisfy a functional equa-
tion
(62) A(RY(X),s) = e(h'(X), s)A(h*? 1 (X),d+ 1 — s).

Here e(h*(X), s) is the product of a constant and an exponential function in s,
in particular nowhere vanishing.

LEMMA 10. Assuming meromorphic continuation and the functional equation
we have
—t +dimc H°(X(C),C)f==1 i=0

de—o L(KH(X),s) = ,
ords—o L(h"(X), s) {dimcHz(X(C>,C)F°°=l i>0.

where t is the number of connected components of the scheme X.

Proof. For i > 0 the point d + 1 > % + 1 lies in the region of absolute
convergence of L(h??~%(X),s) so that L(h?*?~*(X),d + 1) # 0. The Gamma-
function has no zeros and has simple poles precisely at the non-positive integers.
For p+¢=2d—iand p < q we havep<df%, hence I'c(d + 1 — p) # 0. For
p = d— 5 we likewise have I'r(d +1—p) # 0 and I'r(d +1+1 —p) # 0. Hence
Loo(h?7(X),d + 1) # 0 and the functional equation shows A(h?(X),0) # 0,
ie.

(63)  orde—o L(h*(X),s) = — ords—g Loo (h*(X), 5)
= hray Z hPE = dime H' (X (C),C)F==!

r<q

where this last identity follows from Fi (Hpﬂ) = H%P and the sign + in hP*
is the one for which +(—1)? = 1. Indeed, I'r(s — p) (resp. I'r(s —p+ 1)) has
a simple pole at s = 0 precisely for even (resp. odd) p

For ¢ = 0 the function

L(h%(X),5) = Cry (5) -+ Cr (9)

is a product of Dedekind Zeta-functions where H%(X,Ox) = K; x --- x K; is
the ring of global regular functions on X and the K; are number fields. It is
classical that ords—; (k,(s) = —1 and therefore

ord,—o A(h°(X), s) = ords—y A(R°(X Zords 1 Cx, (5

Hence (63) holds for ¢ = 0 with —t added to the rlght hand side.
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9.2. ZETA-FUNCTIONS. For any separated scheme X of finite type over
Spec(Z) one defines a Zeta-function

(X, s) = H ﬁm)_& = HC(X]FP,S)

zeXel
as an Euler product over all closed points. By Grothendieck’s formula [29][Thm.
13.1]
2 dim(XF,, ) -
_ —s i -1)°
((Xe,,s)= [ deto (1 —Frob,'-p *|Hi(Xs, o, Q) .
i=0
If Xy — Spec(Q) is smooth and proper of relative dimension d, there will be

an open subscheme U C Spec(Z) on which Xy — U is smooth and proper. By
smooth and proper base change we have for p € U

Hz(XFp,eﬂ Ql) = Hi(‘XFp,eh Ql) = Hi(X@,eh Ql) = Hi(XQ,eta Ql)lp
and therefore

2d ‘
(64) ¢(x,s) =[] Eo(s) [ L(M' (Xg), )
pEU =0

where

e - —s i (*1)1.
B (s) = detg, (1 — Frob, Lops|H (Xgerr Q))
' Z-I:Io detg, (1 — Frob, ' - p=*| H(X5, o, Q1))

is a rational function in p~—*.

THEOREM 9.1. Let X be a regular scheme, proper and flat over Spec(Z). As-
sume that the L-functions L(h'(Xy),s) can be meromorphically continued and
satisfy the functional equation (62). Then

orde—o ¢(X,5) = Y (=1)"-i- dimg H}(Xw,R).
1€EZ

Proof. Note that regularity of X implies that Xy — Spec(Q) is smooth. By
Lemma 10 and Proposition 8.3 we have

ords—o [] L(hi(Xg), )Y = —t+ > (~1)" dime H(Xp(C), C) ==

1€Z 1EZ
=—t+ Y (1) dimg H' (X", R) ="
i€EZL
=3 (=1)"-i-dimg HY(Xw,R)
i€Z

and in view of (64) it remains to show that ords— E,(s) = 0 for all p (or just
p ¢ U). This follows from the fact that the Frob,, ! eigenvalue 1 (of weight 0) has
the same multiplicity on HZ (X5, o, Qi) = H' (X5, r, Qi) and on H* (X o0, Qi)'
by part b) of Theorem 10.1 in the next section. ]
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COROLLARY 13. Let F be a totally real number field and X a proper, reqular
model of a Shimura curve over F, or of E X E X --- X E where E is an elliptic
curve over F'. Then

orde—o ¢(X,5) = Y (=1)"-i- dimg H}(Xw,R).
i€z
Proof. For any Shimura curve X, by the now classical results of Eichler,
Shimura, Deligne, Carayol and others, L(h'(X), s) is a product of L-functions
associated to weight 2 cusp forms for a suitable arithmetic subgroup of PSLa(R)
associated to X, hence satisfies (62). It is moreover well known that any curve
always has a proper regular model.
By the Kuenneth formula we have
nEY = @ E)Fren(B)¥er?(B)*: = P hl(E)®“(—i2)I
io+i1+iz=d ig+i1+iz=d
i142i2=i i142i2=i
and each tensor power h'(E)®" is a direct sum of Tate twists of symmetric
powers Sym”h!(E). But for elliptic curves E over totally real fields F the
meromorphic continuation and functional equation of L(Sym*h!(E)/F,s) fol-
lows from recent deep results of Harris, Taylor, Shin et al (see [5][Cor. 8.8]).
We remark that a proper regular model X of E? certainly exists if E has semi-
stable reduction at all primes since then the product singularities of £¢, where
€ is a proper regular model of E, can be resolved [35]. |

THEOREM 9.2. Let X be a smooth proper variety over a finite field. Then a)-f)
in the introduction hold for X.

Proof. This was proved for Aj/* in [17][Thm. 9.1] since one clearly has
Hi(XIfVma ) ®Qz R = Hi(‘){&/ma )

But in view of Corollary 12 (see also Corollary 2 and the remark after it) we
have

HY(Xw,Z) = H(X5",2); H (Xw,R) = H (X5 R)
when Xy is defined by Definition 9. Note here that our fundamental class 0
defined in Definition 14 is different from the class e € H' (X, R) used in [17].
The class e lies in the image of H'(Xy,Z) and is the pullback of the identity
map in

H'(Spec(F,)w,Z) = Homg(Wr,, Z) = Homy(Z, Z).

Since the natural map Wy, — R sends the Frobenius to log(p), the elemens 6
and e differ by a factor of log(p). This is consistent with the fact that

(65) ¢*(&,0) = log(p)"Z*(X,1)
where Z(X,T) € Q(T) is the rational function so that ((X,s) = Z(X,p™°)
and Z(X,T) = (1 - T)"Z*(X,1) with r € Z and Z*(X,1) # 0, 0. 0

9.3. REMARKS. We finish this section with some remarks to put our results
in perspective.
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9.3.1. Cohomology with Z-coefficients. If X — Spec(Z) is a (proper, flat, reg-
ular) arithmetic scheme with a section then RI'(Spec(Z)y,,Z) is a direct sum-
mand of RT'(Xw,Z). Hence by [13] H*(Xw,Z) will not be a finitely generated
abelian group and d) does not hold. Even if one could find a definition of
Spec(Z)y, with the expected Z-cohomology the definition of Ay, as a fibre
product (Definition 9) will not be the right one. Heuristically this is because
one should view the fibre product of topoi as a "homotopy pullback”, and the
“homotopy fibre” of v : Xy — X is not independent of X', unlike in the sit-
uation over finite fields. Indeed, viewing R7.Z as the cohomology of the fibre,
Geisser has shown [17] that this complex has cohomology Z, Q, 0 in degrees 0,
1, > 2, respectively, for any X over Spec(F,). So for any X over Spec(F,) one
can view the fibre as the pro-homotopy type of a solenoid.

For X = Spec(Op) where F' is a number field, one expects Rv,Z to be concen-
trated in degrees 0 and 2 (see [32][Sec.9]). On the other hand, if

X = Pépec(@;:)

has the correct Z-cohomology, compatible with the computations of R-
cohomology in this paper, then H*(Xy,Z) must be a finitely generated group
of rank 79, the rank of K3(OF) (see j) in section 9.4.2 below). This can only
happen if R¥~,Z is nonzero for i = 3 or i = 4, the most likely scenario being that
R*y,7Z is nonzero with global sections H°(X,;, R*y.Z) = Homgz(K3(OF), Q).
Again, this is only a heuristic argument since we have not rigorously defined
the homotopy fibre, let alone established any relation between its Z-cohomology
and Ry.Z.

9.3.2. Weil-groups of finitely generated fields. The definition of the Weil-étale
topos as a fibre product is closely related to the idea, briefly mentioned by
Lichtenbaum in the introduction of [28], of defining the Weil-étale topos via
Weil-groups for all scheme points € X, and then gluing into a global topos
in the spirit of [28]. This is because the Weil-group of a field k(x) of finite
transcendence degree over its prime subfield F' would be defined as the fibre
product Gy.) Xar Wr and the classifying topos of this group is the fibre
product of the classifying topoi of the factors by Corollary 4. The remarks of
the previous section would then apply to such a definition as well.

9.3.3. Properties a)-f) for X. If X is regular, proper and flat over Spec(Z) with
generic fibre X of dimension d it follows easily from our results that properties
a)-c) hold for X where of course

RT.(Xw,R) = RT(Xw,R)

and
2d ‘
C(X,5) =¢(X,s) HLoo(hi(X),s)(—Uﬂ
i=0

Property d) must also hold for any reasonable definition of RT'(Xy,Z) as
will become clear from our discussion in section 9.4.2 below. This discussion



ON THE WEIL-ETALE TOPOS OF REGULAR ARITHMETIC SCHEMES 63

will also show, however, that properties e) and f) will definitely not hold for
any definition of RT'(Xw,Z). This is consistent with the fact that there are
no special value conjectures for the completed L-functions A(h*(X), s) in the
literature.

9.3.4. Non-regular/non-proper schemes. For varieties over finite fields which
are not smooth and proper the work of Geisser [18] shows that one has to
replace the étale topology by the eh-topology (which allows abstract blow-ups
as coverings) in order to define groups H!(Xywp,Z) and H:(Xwp,R) which
are independent of a choice of compactification of X and which satisfy a)-f)
in the introduction (where the index W is replaced by Wh). For arithmetic
schemes over Spec(Z) a similar modification will be necessary, and one also has
to assume some strong form of resolution of singularities for arithmetic schemes.
We have refrained from trying to incorporate the idea of the eh-topology in this
paper since our results (based on the fibre product definition of Xy ) are only
very partial in any case.

9.4. RELATION TO THE TAMAGAWA NUMBER CONJECTURE. In this section
we establish the compatibility of the conjectural properties of Weil-étale co-
homology, as outlined in the introduction and augmented with some further
assumptions below, with the Tamagawa number conjecture of Bloch and Kato.

9.4.1. Statement of the Tamagawa number conjecture. Let X be a proper,
flat, regular Z-scheme with generic fibre X of dimension d. The original Tam-
agawa number conjecture of Bloch and Kato [4] concerned the leading Taylor
coefficient of L(h'(X),s) at integers s > “41 . This was then generalized by
Fontaine and Perrin-Riou [15] to a conjecture about the vanishing order and
leading coefficient at any integer s. In this paper we are only concerned with
s=0.

One defines ”integral motivic cohomology” groups Hy; (X 7, Q(q)) for example,
as

HY (X2, Q(g)) = im(Kag (X)) — Kaq (X)),

with K (X)g) the ¢-th Adams eigenspace of the algebraic K-groups K;(X) ®z
Q. Denote by W* = Homg(W, Q) the dual Q-space and set Wg := W @q R.

CONJECTURE 1. (Vanishing order) The space Hy{ ™" (X /7, Q(d+1)) is finite
dimensional and

ords—o L(h*(X), s) =dimg H}(h*(X)*(1))* — dimg H}(h*(X)*(1))*
=dimg H(h**(X)(d +1))* — dimg H}(h**~*(X)(d + 1))*
=dimg Hy! " (X /2,Q(d +1))* |

Let H} (X, R(g)) denote (real) Deligne cohomology and let
(66) Pl Hi 7N (X 7, Q(d + 1)r —HE™ (X, R(d + 1))

be the Beilinson regulator.
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CONJECTURE 2. (Beilinson) The map p’, is an isomorphism for i > 1 and
there is an exact sequence

(67) 0 — Hyf ™M (X z,Q(d+1))r oo, HXH (X g, R(d+1)) — CH*(X); — 0
fori=0.

We remark that Deligne cohomology satisfies a duality

(68)  HA™'(X)nR(d+1)" = Hp(Xp,R) = H/(X(C),R)*

for i > 0 and deduce the well known fact that the vanishing order of L(h*(X), s)
predicted by Conjectures 1 and 2 is in accordance with Lemma 10. Another
consequence of conjecture 2 is

(69) HY N (X)2,Q(d +1)) =0

for ¢ > 2d + 1, a particular case of the Beilinson-Soule conjecture.
Define the fundamental line

AR (X)) = detg! (HH(X(C), Q)") @g detg H2 (X 5,Q(d + 1))°
for ¢ > 0 and
Ap(h°(X)) = detqCH (X )o®qdety ' (H(X(C), Q) ")@qdetoH iyt (X /2, Q(d+1)) "
for i = 0. There is an isomorphism
P iR AR (X))

induced by (68) and the dual of (66) (resp. (67)) for ¢ > 0 (resp. ¢ = 0).

Now fix a prime number ! and let U C Spec(Z) an open subscheme on which
[ is invertible. For any smooth [-adic sheaf V on U and prime p # [ define a
complex concentrated in degrees 0 and 1

1 —Frob; 1

RTU;(Qp, V) = RU(Fp,ipjp V) = vie Vi

where I, is the inertia subgroup at p and 4, : Spec(F,) — Spec(Z) and jj, :
U — Spec(Z) are the natural immersions. For p = [ define
1—o,e
RT4(Qp. V) = Deris (V) *=2 Diyin(V) @ Dar(V)/F°Dar(V')
where D.,;s and Dgr are Fontaine’s functors [15]. In both cases there is a map
of complexes

Ry (QP’ V) - RF(QP’ V)
and one defines RT',¢(Qp, V) as the mapping cone. The next Lemma shows

that the complex RI';(Qp, V) has a uniform description for p =1 and p # [ in
the case that interests us.
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LEMMA 11. Let V' be finite dimensional Qp-vector space with a continuous
G, = Gal(Q,/Qy)-action and such that Dar(V)/F°Dar(V) = 0. Then there
is a commutative diagram in the derived category of Qp-vector spaces

RU4(Qp, V) ——— RI(Qp, V)

< n
RU(Fp, VI») —— RI(Q,,V)

where K 1S a quasi-isomorphism.

Proof. For a profinite group G and continuous G-module M we denote by
C*(G, M) the standard complex of continuous cochains. There is an exact
sequence of continuous G,-modules
0 °
00—V —B"(V)S= BYV)—0

where BY(V) = Beyis ®q, V' (with diagonal G ,-action), BY(V) = Beris ®q, V@
(Bar/F°Bar) ®q, V and d°(z) = ((1 — ¢)(z),+(x)) where ¢ is induced by the
canonical inclusion Be.;s — Bgr (see [15] for more on Fontaine’s rings Bip;s
and Byg). Viewing this sequence as a quasi-isomorphism between V' and a two
term complex we obtain a quasi-isomorphism

RD(Q,,V) = RU(G,, V) = C*(G,, V) = Tot (c*(cp, B'(v)) L5 o*(a,, Bl(V))>I

where Tot denotes the simple complex associated to a double complex. By
definition RI'f(Qp, V) is the subcomplex

0
DcriS(V) = HO(GP,BO(V)) LA HO(GP,Bl(V)) = Dcris(V)@DdR(V)/FODdR(V)I
of this double complex. For any continuous G,-module M there is moreover a
quasi-isomorphism

—Frob !
R (G M) = RE(E,, BT, M) = Tot (€ (1, 3) “ €(1,000))

where Frob, € G, is any lift of the Frobenius automorphism in G,/I,
acting simultaneously on I, (by conjugation) and on M. The complex
RI(F,, H°(I,, M)) is the subcomplex

1—Frob;1
H(Ip, M) ———— H°(I,, M)

of this double complex. Combining these two constructions, we deduce that
RT'(Q,, V) is canonically isomorphic to the total complex of the triple complex

C*(I,, B(V)) —%— C*(I,,B'(V))
1—Frob;1J( 1—Fr0b;1l

C*(I,, B(V)) =% C*(I,, B\(V))
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and RI(F,, H°(I,,V)) is canonically isomorphic to the total complex of the
double subcomplex

HO(I,, BY(V)) —%— H(I,, BY(V))

1—Fr0b;1l 1—Frob;1l

HO(I,, B°(V)) —X— HO(1,, B'(V)).

Now if Dggr(V)/F°Dar(V) = 0 this double complex is naturally quasi-
isomorphic to RI'f(Qy, V) via the first vertical map & in the following diagram

Dcris(V) i) Dcris(V)

-] -]
HO(I,, BY(V)) —% H(I,,B(V))
1—Frob;1l 1—Frob;1l

HO (L, B(V)) —= HO(L,, B°(V)).
Indeed, the vertical sequences in this diagram are short exact sequences.
The space D.is(V) = H°(Gp, B°(V)) is clearly the kernel of 1 — Frob;1 on
H°(1,,B°(V)), and 1 —Frob;1 is surjective. This is because there is an isomor-
phism of Frob,-modules H°(I,, B°(V)) = Deyis(V) ®g, Q4" = (Q")? where
d = dimg, D.is(V) and @;”’ is the p-adic completion of the maximal unram-
ified extension of Q. It is well known that 1 — Frob,, is surjective Q,". This
concludes the proof of the Lemma. |

Next one defines a global complex RI'f(Q, V') as the mapping fibre of
RT(Uet, V) — €D RT4(Q,, V).

pgU
Then there is an exact triangle in the derived category of Q;-vector spaces
(70) RUe(Uet, V) — RT;(Q,V) — D RT4(Qy, V)

p¢U

where the primes p ¢ U include p = oo with the convention RI'¢(R,V) =
RT(R,V). One can further show that Artin-Verdier duality induces a duality

H{(Q,V) = Hy/(Q,V*(1))".
The index ” f” stands for ”finite” which in this context is synonymous for

”unramified” or ”coming from an integral model”. The following proposition
justifies this interpretation of the complex RI'; in the case of interest in this

paper.

PROPOSITION 9.1. Let m : X — Spec(Z) be a regular, proper, flat Z-scheme
and X, its Artin-Verdier étale topos. Let U C Spec(Z) be an open subscheme
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so that my : Xy — U is proper and smooth, let | be a prime number invertible
on U and set X, = X @z F,. For brevity we write Xog et for Sh(Xso) (see Prop.
4.1). Assume Conjecture 9 in the next section. Then there is an isomorphism
of exact triangles in the derived category of Q-vector spaces

RFC(XU,cta Ql) - Rr(jcta Ql) g @ RF(Xp,cta Ql) -
pgU

l ! |

2d ) 2d . 2d )
D RIc(Uet, V')[i] — @ RUp(Q,V))[=i] — @ @ RT(Qp, V)')[-i] —
1=0 1=0 pQU’L:O

where V} := Hi(X@vet, Q1) and the bottom exact triangle is a sum over triangles

(70).

Proof. For all p and [ (including p = oo with a suitable interpretation of the
terms) we shall first show that there is a commutative diagram
(71)

RF(Xp,etv Ql) - RF(XQP,GM Ql) - RFXP (XZp,em Ql)[l] -

‘| d !

2d ] 2d ) 2d )
® RIS, Vi)[-i) — @ RN(@,, Vi)l-i] — @ RL/y(Qy V)l-i] =

where the rows are exact and the vertical maps are quasi-isomorphism. This
then induces a commutative diagram where the vertical maps are quasi-
isomorphism
(72)
RI'(Ayes, Q1) — ?RF(XQ,,@MQZ) — ?RFXP(XZ,,,etle)[l]
PEU p¢U

o i !

® R (U V-] — @ & RU(Q, Vi) — @ @ RT) (@, Vi)[-i).

= pgU =0 pgU i=0
Indeed, the first commutative square is induced by the commutative diagram

Xy —— Xy,

| l

U «——— Spec(Q,)

and a decomposition Ry, Q; = @?io Vji[—i] in the derived category of l-adic
sheaves on U, and the second is a sum over p ¢ U of the right hand square
in (71). Taking mapping fibres of the composite horizontal maps in (72) we
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obtain an isomorphism of exact triangles

RT(Xer, Q1) —  RI(Aye, Q) — ?RFXP(XZP,et,Ql)[H —
pgU

l l !

2d ] 2d ) 2d .
@ RUH(Q.V))[~i] — @ RD(Uut Vi)—i] — @ @ BT 5(Qp,Vi))[—i] —
1=0 1=0 ngUz:O

where we use excision to identify the first fibre with RT'(Xe,@;). The oc-
tahedral axiom then gives the isomorphism of exact triangles in Proposition
9.1, using the fact that the mapping fibre of the top left (resp. bottom left)
horizontal map in (72) is RUe(Xy.et, Q1) (resp. @72, RT (U, Vi)[—i]).
Concerning (71), for p = oo we declare RI'(X, c,Q;) = RI'(Xg, e, Q) and
RT' x,(Xz,ct, Qi) = 0. This agrees with the convention RI';(R, —) = RI'(R, —)
introduced above. For p # oo the top exact triangle is simply a localization
triangle in étale cohomology since we have RI'(X) ey, Q) = RI’(XZP)et, Qi) by
proper base change. It suffices to construct quasi-isomorphisms « and § so
that the left hand square in (71) commutes. For brevity we now omit the index
et when referring to (continuous l-adic) étale cohomology.

The quasi-isomorphism 3 is induced by the Leray spectral sequence for mq,
and a decomposition

2d
(73) Rrg, .Q = P V[l
1=0

in the derived category of l-adic sheaves on Spec(Q,). The existence of «
follows if the composite map

i i H'(B i i i
HY (%, Q1) = H'(X,, Q) 2 BO(@y, Vi) & H' (@, Vi) & HA(Q,, V)
induces an isomorphism

H'(X,, Qi) = HY(Q,, V') ® Hj(Qp, V7).

We shall show this only referring to the filtration F* on H i(XQp, Q) induced

by the Leray spectral sequence for g, , not any particular decomposition (73).

The Hochschild-Serre spectral sequence for the covering &5, — &7z,, whose
p

group we identify with Gal(I_Fp /F,), induces a commutative diagram with exact
IO A
(74)
0 — HYFp, H "N X, Q) — H'(X,,Q) — H(F, H'(X,,Q)) — 0

| l l

0 — Hl(IFI)’Hiil(X@ZHQl)) - Hi(XvaQl) - HO(]FP?Hi(X@ZNQl)) — 0

| | b

HY(Fy, H (L, Vi) HY(Qp, V) = H'(Fy, HO(I, V)')).
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The left and right composite vertical maps are isomorphisms by Theorem 10.1
b) for I # p (resp. Conjecture 9 for [ = p) and the fact that

RT(F,,V) = RT(F,, W,V)

for any l-adic sheaf V on Spec(F,) where W,V C V is the generalized Frobenius
eigenspace for eigenvalues which are roots of unity (or just for the eigenvalue
1). Note also that

H}C(va Vlz) = Hk(Fp’ HO(Ipv Vlz))
for K =0,1 and all [ and ¢ by Lemma 11 since
Dar(Vy) = Hjp(Xo, /Qy) = FOHjp(Xg, /Q,) = FODar(Vy).

The kernel of the map « in (74) is H°(F,, H'(I,,V;"')), hence there is a
commutative diagram with exact rows

0 — H'F,, H' ™ (g, Q) — F'H (Xg,, Qi) — HOF,, H'(I,, V™)) —

| | ”
0 — HI(FPvHO(I;D?Vli_l)) - Hl(QP’Vli_l) - HO(vaHl([P’Vli_l)) -

which implies that the left vertical isomorphism in (74) fits into a commutative
diagram with the natural map F1H'(Xg,,Q;) — H'(Qp, V/™"). This finishes
the proof of the existence of a and of Proposition 9.1.

We remark that for [ # p we have WoH(I,,, Vi) = Wo((V}")1,(—=1)) = 0 and

hence isomorphisms
WOHi(XIF‘pv @l) = WOHl (X@;ra Ql) = I/VOILI0 (Ip7 Vvlz)

which implies that the top left and right, and therefore the top middle vertical
maps in (74) are isomorphisms. We conclude that

RF(XINQZ) = RF(XQP7QI)
for | # p like for p = oco. O

We continue with the statement of the Tamagawa number conjecture. One
might view the following conjecture as an [-adic analogue of Beilinson’s conjec-
ture, or as a generalization of Tate’s conjecture.

CONJECTURE 3. (Bloch-Kato) There are isomorphisms
pi s HF(Q. V) = Hyf™ (X2, Q(d + 1)g,
and H}((@,Vll) =0 for any i.

One can shoW easily that HY(Q,V,?) = Ch(X)q,, H}(Q,V}") = 0 for i > 0
and H fc’((@7 V") = 0 so that Conjecture 3 computes the entire cohomology of
RT'#(Q, V). Together with Artin’s comparison isomorphism

‘/li = Hi(XQ,ethl) = H’L(X(C)v(@)(@l
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as well as the isomorphisms
Lp detg, RFf(Qp, V) = Q

induced by the identity map on (V;')’» and D..;s(V;'), Conjecture 3 induces an
isomorphism

952 Ap(h'(X))g, & detg, RT(Q,V}") ® detg, RT'(R, V}) = detg, RT¢(Uet, V}').

CONJECTURE 4. (I-part of the Tamagawa number conjecture) There is an iden-
tity of free rank one Z;-submodules of detg, RT(Ust, V})

Zy - 9) 09 (L*(h(X),0)" 1) = detz, RTo(Ues, T})
for any Galois stable Z;-lattice T} C V.
This conjecture is independent of the choice of the lattice T} since
(75) [T 1 e M) =1
i€z
for any finite locally constant sheaf M whose cardinality is invertible on U. The

following conjecture allows a reformulation of the Tamagawa number conjecture
in terms of the L-function

Lo (X), ) = [] Ly (), 5)
peU
associated to the smooth l-adic sheaf V’ over U. Recall that a two term complex
C= (W 2, W) is called semisimple at 0 if the composite map
H°(C) = ker(\) € W — coker(\) = H'(C)
is an isomorphism. This is always the case, for example, if the complex C is

acyclic.

CONJECTURE 5. (Frobenius-Semisimplicity at the eigenvalue 1) For any prime
number p the complex RT §(Qp, V}’) 18 semisimple at zero.

Under this conjecture one has a second isomorphism
Ip : detg, RT#(Qp, V') = Qi

which satisfies

tp = Py (h'(X), 1), = Ly (h'(X), 0) log(p)™71;,
where 7, = ordr—1 P,(h*(X),T) = —ords—o L,(h*(X), s) (see [7][Lemma 2]).
If RT';(Q,p,V}?) is acyclic then i, is the canonical trivialization of the deter-
minant of an acyclic complex. Using this second isomorphism the Tamagawa
number conjecture becomes
(76) Zy -9 0 9% (L (h'(X),0)7") = detz, RTo(Uet, T})
where B . S ‘

0 = [ By (r'(X), )97, 9% = ] log(p) r i

pEU pgU
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9.4.2. Further assumptions on Weil-étale cohomology. In order to establish
the compatibility of the conjectural picture a)-f) outlined in the introduction
with the Tamagawa number conjecture, we need to augment it with a number
of further assumptions. Even though a)-f) only refer to cohomology groups
we now assume that these groups do indeed arise from a topos Xy - different
from the one defined in Definition 9 - and that compact support cohomology
is defined via an embedding into a proper scheme followed by an Artin-Verdier
type compactification Xy (and is independent of a choice of compactification).

g) For an open subscheme U of an arithmetic scheme X with closed com-
plement Z there is an exact triangle in the derived category of abelian
groups

RT.(Uw,Z) — RT.(Xw,Z) — RU.(Zw,Z) — .

h) There is a morphism of topoi v : Xy — X for any arithmetic scheme
X (or the Artin-Verdier compactification of such a scheme). Moreover,
for any constructible sheaf F on Xy the adjunction F — Ry, y*F is
an isomorphism.
If X has finite characteristic then g) and h) hold if one understands the index
W as denoting the Weil-eh cohomology of Geisser (see [18][Thm. 5.2b), Thm.
3.6] for h) and [18][Def. 5.4, eq. (4)] for g)). The following property is a natural
extension of property g) to the Artin-Verdier compactification.
i) If X is regular, proper, flat over Spec(Z) then there is an exact triangle
in the derived category of abelian groups

RU.(Xw,Z) — RT(Xw,Z) — RU(Xeow,Z) —
and there is an exact triangle
RT.(Xw,R) — RT(Xy,R) — RT(Xoow, R) —
in the derived category of R-vector spaces, where X 1 was defined in
Definition 10.
Note that
RT(Xoo,w, Z) = RT'(Xso, Voox (Z)) = RI'(Xeo, Z)
by Proposition 8.2 and this last complex is isomorphic to the singular com-
plex of the (locally contractible) compact space X, and is therefore a perfect
complex of abelian groups. Since the complex RIT'.(Xw,Z) is perfect by d)
the triangle in i) then implies that RI'(Xy,Z) is also a perfect complex of
abelian groups. Note also that, unlike in the situation g), the triangle for R-
coefficients is not the scalar extension of the triangle for Z-coefficients since
neither RI'(X w,Z) nor RI'(Xw,Z) satisfies property e). One rather has a
commutative diagram of long exact sequences

— B (Xow R) — HP(Xw,R) - 0 — HP(Xow.R)

[ [ I I

— H* N (Xoow, Z) — HIP(Xw, L) — H(Xw,Z) — H(Xoow, Z)
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where only ag is an isomorphism by e). Here we assume ¢ > 0 so that
H*2(Xy,R) = 0 by Theorem 7.1. There is a direct sum decomposition

HT (Xpow,R) =2 HHH X, R) © H (X, R)
by (47) and an isomorphism
H™M (X w, Z)g 2 H (X, Z)r =2 H (X, R).
One therefore obtains a map for ¢ > 0
rio HY (Xoo, R) — HP (X, Z)r
which is an isomorphism for i > 0.
Proposition 9.1 and assumption h) yield an isomorphism for ¢ > 0
ri HF(Q V) 2 H (X, Qu) = H (X, Qi) = H (X, Z) g, -
The following is the key requirement on a definition of a Weil-étale topos.

j) If X is regular, proper, flat over Spec(Z) with generic fibre X of di-
mension d then there are isomorphisms

N H T (Xw, L) = Hyf (X2, Q(d + 1))

for i > 0 such that A\ o7, = (pL,)* and A\, o7} = pj.
This is true for d = ¢ = 0 with Lichtenbaum’s current definition where

H*(Spec(Or)yy, Z)g = Hy(Spec(F) 2, Q(1))" = Homz(OF, Q).
Note that j) together with (69) and h) also implies

H™(Xw,Z) =0

for i > 2d 4+ 1, which is not satisfied by the current definition of Spec(OF)y, .
PROPOSITION 9.2. Suppose there is a definition of Weil-étale cohomology
groups for arithmetic schemes satisfying a)-j) except perhaps f) for schemes
of characteristic 0. Let X be a proper, smooth variety over Q of dimension d
which has a proper, regular model over Spec(Z) such that Conjectures 1,2,83,5,9

are satisfied. Assume L(h(X),s) has a meromorphic continuation to s = 0 for
alli. Then the Tamagawa number conjecture (Conjecture 4) for the motive

2d
hX) = P ()i

is equivalent to statement f) for any arithmetic scheme X with generic fibre X .

Proof. If X is any arithmetic scheme with generic fibre X then there exists an
open subscheme U C Spec(Z) so that 7 : Xy — U is proper and smooth. Let
Z be the closed complement of U. Then by g) we have an isomorphism

detz RT.(Xw,Z) = detzRFC(X(Lw, 7) ®z detzRFc(XZJ/V, Z)
as well as factorizations
C(X,8) = ((Ay,s)¢(Xz,8); (F(X,0) =" (Ay,0)("(Xz,0).
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Since we assume f) for Xz = [[ ., &, , statement f) for X is equivalent to

pEZ
statement f) for Xy, We now assume that X' is the proper regular model of X.

The exact triangle
RTo(Xyw,Z) — RU(Xw,Z) — @ RT(X,w,Z)
pE€ZU{co}
together with assumption j) induces an isomorphism
dw : detqRTo(Xyw, Z)g ZdetqRT (X, Z)g® Q)  dety' RT(X,w, Z)g
peZU{co}

2d

=) Ay (R (X))

i=0
By assumption j) there is a commutative diagram of isomorphisms

R ——  detgRT(Xyw,Z)g

[ [ s

®(0L) " oa i)y D
S @ A (X))

where « is induced by ¢). The power of log(p) in ¥ appears for the same reason
as in the proof of Theorem 9.2. Similarly, j) implies that for any prime [ € Z
we have a commutative diagram of isomorphisms

deth RI‘C(XU,W7 Z)QI I deth RFC(XU,Cta Ql)

(77) [ |
. 1) ®i(9F (-1t Y .
@2, Ap(h (X5 2 @2 detl Y BT (Ue, V7)

where the top isomorphism is induced by an isomorphism

R (Xuw,Z) @7 Zi = RTo(Xu,et, Zy)

R

coming from assumption h) and the right vertical isomorphism is induced by
the isomorphism
RFC(XU,ety Zl) = ch(Uet7 RTF*ZZ)

and

2d ) 2d .
detz, RTc(Uet, R Zy) = (R) detly " RTc(Uee, Li) = R) dety, V' RU(Uet, T7)
=0 =0

where Lf := R'n,7Z; and Tf - Vl’ is the torsion free part of L%. Note that we
have an exact sequence of locally constant Z;-sheaves on U

OHL%,tOTHL;‘*}T‘lZ‘HO

and an identity detZZRI‘C(Uet,Tf) = detZlRFC(Uet,Lﬁ) of invertible Z;-
submodules of detg, RTc(Uet, V}') by (75).
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As discussed above statement f) for Xy is equivalent to statement f) for Xy
for U’ C U, hence we can always assume that a given prime [ is not in U. If
we know statement f) for Xy then the image under ~y of

2d
(X, 0) = [ Ly (h'(X),0) Y
i=0
generates the natural invertible Z;-submodule

2d
RTo(Xyw,Z) 0z 2 = R) et RU(Ues, T})
i=0
in (77) (see the discussion in the previous paragraph). Hence we obtain the
Tamagawa number conjecture in the form (76) for h(X). Conversely, knowing
the Tamagawa number conjecture for hA(X), we obtain the [-primary part of
statement f) for X7n ;3 which is equivalent to the [-primary part of statement
f) for Xy. Varying [ we obtain f) for Xy. Here by l-primary parts, we mean
that for any perfect complex of abelian groups C, such as RI'.(Xyw,Z), an
element b € detz(C) ® Q is a generator of detz(C) if and only if the image of
b in detz(C) ® Q; is a generator of detz(C) ® Z; for all primes .
O

10. ON THE LOCAL THEOREM OF INVARIANT CYCLES

Let R be a complete discrete valuation ring with quotient field K and finite
residue field k of characteristic p. Set S = Spec(R), n = Spec(K), s = Spec(k).
Let S = (S,35,7) be the normalization of S in a separable closure K of K and
denote by I C G := Gal(K/K) the inertia subgroup.

10.1. I-ADIC COHOMOLOGY FOR p # [. In this section [ is a prime different
from p. The following lemma might be well known as a consequence of de Jong’s
theorem on alterations [11], and also of Deligne’s work [9] in case char(K) = p.
We shall only need it for X, — Spec(K) proper and smooth.

LEMMA 12. Let X, — Spec(K) be separated and of finite type. Then the
G-representation H'(X;,Q;) has a (unique) G-invariant weight filtration

- CW;H (X5,Q) C W H (X, Q) C -+
in the sense of [9][Prop.-Def. 1.7.5], i.e. if F' € G is any lift of a geometric
Frobenius element in Gal(k/k) then the eigenvalues of F on gr}V H' (X5, Q) are

Weil numbers of weight j € Z with respect to |k|. The same is true for the G-
representation H:(X7,Q;). One has W_1H"(X7,Q;) = W_1H!(X5;,Q;) = 0.

Proof. By [9][Prop.-Def. 1.7.5] it suffices to show that all eigenvalues a of F’
on H(X;,Q;) are Weil numbers of some weight j = j(a) € Z. In doing so,
one may pass to an open subgroup G’ C G, i.e. replace X,, by its base change
to a finite extension K'/K, since an algebraic number « is a Weil number with
respect to |k| if and only if al*"**] is a Weil number with respect to |k’|. One
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can now argue exactly as in the proof of [2][Prop. 6.3.2] to which we refer for
more details. If X, is the generic fibre of a proper, strictly semistable scheme,
then the vanishing cycle spectral sequence computed by Rapoport and Zink
[34][Satz 2.10]

(78) BT = @ HTTYUPRD Q) (—r—q) = H (X5 Q)
q>0,r+q>0

together with the Weil conjectures for the smooth proper schemes Y(*) give the
statement (and moreover the weight filtration on H*(X5,Q;) is the filtration
induced by the spectral sequence). If X, is only smooth and proper then by
de Jong’s theorem [2][Thm. 1.4.1] there is a generically finite, flat X, — X,
where X7’7, is strictly semistable. Hence H'(X;,Q) is a direct summand of
the G’-representation H i(X%,Ql) for which the statement holds. Then one
can use induction on the dimension together with the long exact localization
sequence to prove the statement for H};(X,—,7 Qi) for any separated X, of finite
type. Another application of de Jong’s theorem is necessary here to assure that
a regular open subscheme U C X, has a finite cover U’ — U which is open in
a proper regular K-scheme. For X, smooth over K, Poincare duality then im-
plies the statement for H*(X5, Q;) and for general X one uses a hypercovering
argument. In this proof, starting with (78), all occurring F-eigenvalues have
non-negative weight, i.e. we have W_1 H*(X;,Q;) = W_1H!(X;5,Q) =0. O

Let f : X — S be a proper, flat, generically smooth morphism of relative
dimension d. For 0 < i < 2d one defines the specialization morphism

(79> sp HL(X53@Z) - Hi(Xr_le)I
as the composite
(80) Hi(X§an) = Hi(Xlan) - HZ(X;le) i Hi(Xﬁle)

where X' is the base change of X to a strict Henselization of S at § and the first
isomorphism is proper base change. The map sp is G-equivariant and respects
the weight filtration.

THEOREM 10.1. If X is regular then the following hold.
a) The map
H'(X5,Qu) = Wil (X5, Qi) — Wi H' (X, Q)
induced by sp is surjective for all i.
b) The map
(81) WiH (X5, Q) — WiH (X5, Q)"

induced by sp is an isomorphism for all i, and the zero map for i > d.
¢) The map sp is an isomorphism for i =0, 1.
d) If W;H (X, Q) = H(X5,Q)! for all i then the map

Wz’lei(X@@l)—) i71Hi(Xﬁan)I

induced by sp is an isomorphism for all i.
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Remarks. a) By part a) of the theorem, the assumption of part d) is equivalent
to the surjectivity of the map sp for all 7, a statement which is called the local
theorem on invariant cycles. It is known to hold if R is the local ring of a smooth
curve over k by [9][Lemma 3.6.2], see also [9][Thm. 3.6.1], but it is only conjec-
tured in mixed characteristic. Unconditionally, we were only able to prove the
weak statement in b) rather than the full conclusion of d). Part ¢) is probably
well known and follows, for example, from b) and results of [21][Exposé IX] on
Neron models which assure that W1 H (X, Q) = H (X5, Q).

b) It is easy to construct examples where sp is not injective for i > 2. For
example if X is the blowup of a proper smooth relative curve over S in a closed
point, then H?(X3, Q;) will have an extra summand Q;(—1) corresponding to
the exceptional divisor which gives a new irreducible component of Xj.

¢) If X arises by base change from a regular, proper, flat scheme X — Spec(Z)
part b) of the theorem implies

2d

ord,—n (X, 5) = ord,—, [ [ L(h'(Xg),s) ™"
=0

for integers n < 0 (and for n = 3) where ((X,s) is the Zeta-function of the
arithmetic scheme X and L(h*(Xy), s) is the L-function of the motive h'(Xgp)
defined by Serre [36]. Indeed the former (resp. latter) is an Euler product
of characteristic polynomials of Frobenius on H'(X ® F,,Q;) (resp. H' (X ®
Qp, Q)7). These are equal for almost all primes and at the finitely many (bad
reduction) primes where they might differ, part b) assures that the vanishing
order at s = n < 0 of both factors, which equals (—1)**! times the multiplicity
of the Frobenius-eigenvalue p™ (of weight 2n), is the same.
d) Regularity of X is a key assumption in the theorem. The map sp will be
an isomorphism for ¢ = 0 if X is only normal but for ¢ = 1 normality is not
even sufficient for surjectivity of sp on Wy, as the following example of de Jeu
[8] shows. If E is an elliptic curve over Q given by a projective Weierstrass
equation
YV?Z = X%+ AXZ7?+ BZ®

with A, B € Q then for any u € Q* the curve

Y?Z = X? +u*AXZ? +u°BZ?

is isomorphic to E, and if u* A, uS B € Z this equation defines a normal scheme
&, proper and flat over Spec(Z), inside PZ. Indeed, the affine coordinate ring
of the complement of the zero section (X : YV : Z) = (0:1:0)is R =
Z[z,y]/(y?> — 23 — u*Ax — uSB) and hence a complete intersection. So R is
normal if and only if all local rings A, for primes p of height < 1 are regular.
If p maps to the generic point of Spec(Z) this is clear because E is a smooth
curve over Q. If p maps to (p) for some prime number p, then p = R - p since
R - p is already a prime ideal as the equation y? — 2% — u* Az — u®B remains
irreducible modulo p. Hence p is principal and A, is a DVR. The generic point
of the zero section maps to the generic point of Spec(Z), hence £ is normal.



ON THE WEIL-ETALE TOPOS OF REGULAR ARITHMETIC SCHEMES 77

If we now pick v in addition to be a multiple of some prime p where E has split
multiplicative reduction, then &5 is a cuspidal cubic curve and therefore

0=H"(&,Q) — H' (&;, Q)" = WoH (&5, Q) 2 Q

is not surjective.

However, the condition that X is locally factorial (all local rings are UFDs)
lies between normality and regularity and is sufficient to ensure that our proof
of ¢) given below goes through. Regularity is only used for the isomorphism
Pic(X) = CI(X) and for [33][Thm. 6.4.1] via normality.

Proof. Since the statement of Theorem 10.1 only depends on the base change
of f to the strict Henselization of S at § we may assume that S is strictly
Henselian. Note that regularity is preserved by this base change by [29][1,3.17
c)l.

For a) we follow Deligne’s proof of [9][Thm. 3.6.1], replacing duality for the
essentially smooth morphism X — Spec(k) by duality for the morphism f
combined with purity for the regular schemes X, proved by Thomason and
Gabber (see [16]), and S, proved by Grothendieck in [20][I,Thm. 5.1]. The
same arguments as in loc. cit. lead to the commutative diagram with exact
rows and columns

H;Ezl(X7 QZ)

0 — H (X0, Q)i(-1) - H(X,,Q) — H(X,Q) — 0

(82) TSP
H{(X,Q) = H(Xs Q)

Hj);(g (Xv Ql)
and after application of the exact functor W; to a diagram

W HH (X, Q)

I

WiHi(X'f]an) — WiHi(Xﬁle)I — 0
[ [
WiH (X, Q) —— WH (X5, Q)
so that it remains to show that

(83) WHH(X, Q) =0
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for all i. The vertical long exact sequence in (82) arises by applying the (exact)
global section functor T'(S, —) to the exact triangle

Rf.RHomy (i.Q;, Q;) — Rf.Q; — Rf.Rj.Qy
where i : X5 — X and j : X,, — X are the inclusions. By purity for X [16][§8]
we have Q; = Rf'Q;(—d)[—2d] and the (sheafified) adjunction between Rf"
and Rf gives
Rf.RHom y (i.Q;, Q) = RHomg (R fii.Qp, Qi (—d))[—2d]
= R@S(is,*Rfs,*@bQl(_d))[_2d]
2 i, RHom, (Rf; . Qu, Ri,Qi(—d))[~2d]
= is,*Rms(Rfs,*Qla Ql)(_d - 1)[_2d - 2]

where i, : s — S is the closed immersion and fs; : Xy — s the base change
of f. Here we have also used Rf. = Rfi (f proper) as well as the sheafified
adjunction between i5) = 15, and i'., and purity for S. This last complex has
cohomology in degree i + 1 given by

Hosz (H2d+2_i_1 (X§v Ql)> Ql)(_d - 1)
which has weights greater or equal to 2(d + 1) — (2d +2 —i — 1) =i + 1 since
Wi H* (X5, Q) = H*(X5,Q;) by [9][Cor. 3.3.8]. This finishes the proof of a).

Concerning b), we apply the exact functor W; to the diagram (82) and obtain
a commutative diagram

WiH (X, Q) £, WiH (X5, Q!
I I
WiH (X,Q) —— WiH (X5, Q).
For ¢+ > 2 the map « is an isomorphism since

Wi HY, (X, Q) C W1 HY (X,Q) =0

5 5

for j =i,i+ 1 by (83). For i = 0,1 we already have
Hé(g(X7 Ql) = HOHIQL (H2d+27i(X§7Ql)le)(_d - 1) =0

before applying W; and the map « is also an isomorphism. For any ¢ the map
[ is an isomorphism since

Wi (H'™H(Xq, Q)r(=1)) = Wi (H™H(X5,Q)1)(-1) = 0
by Lemma 12. Hence the map induced by sp on W is also an isomorphism. For
i > d both sides of (81) vanish. Indeed, the weights of H(X5,Q;) are greater
or equal to 2(i — d) > 2 by [9][Cor. 3.3.4] and the same is true for H*(X;, Q)

as follows from Poincare duality and the fact that the weights on H*(X5, Q;)
are < 2 for ¢ < d. This in turn can be read off from the spectral sequence (78)
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in the strictly semistable case and follows in general from de Jong’s theorem.
Hence

WiH (X5,Qi) = Wi H' (X5,Q)' =0
for ¢ > d and we have finished the proof of b).

Concerning d), we apply the exact functor W;_; to the diagram (82) and obtain
a commutative diagram

Wis i Hi(X,, Q) —— Wi Hi(X,, Q)
I -
W, H(X, Q) ——— Wi1H (X5, Q)

where « is an isomorphism for the same reason as in the proof of b) and £ is
an isomorphism since

Wi1 (H (X5, Qu)r(—1)) = Wig (H™H (X5, Qu)1) (-1)
is dual to
H=H (X5, Q) (d+ 1) /Wag—ipo (H?* (X5, Q)" ) (d + 1)

which vanishes by the assumption in d).

Concerning c), the case i = 0 follows from b) since W1 H°(X5, Q) = H°(X5, Q)
and W1 HO(X5, Q) = HO(X5;,Q;)!. The case i = 1 can be deduced from b)
and [21][Exposé IX] or from results of Raynaud on the Picard functor [33]. We
give the details of this last argument because the method, essentially using
motivic cohomology, might be of some interest. The short exact sequence

0— pp — Gy LitN G, — 0 of sheaves on X,; induces an isomorphism
(84) le*ﬂl” = (le*Gm)l”

of sheaves on Se; since (fGy,)/1” = 0. Indeed, the stalks HO(Y, O5) = [[; R
and H(Y;, 05 ) = [1,(L; ®x K)* of f.G,, are I-divisible since S is strictly
Henselian. Here

X—-Y= HSpec(Ri) — S

is the Stein factorization and L; is the fraction field of R;. The Leray spectral
sequence for f gives an exact sequence
0— Hl(Sa fiGm) — Hl(XaGm) - HO(Sv le*Gm) - HQ(Sv [«Gm)

and H'(S, f.G,,) = 0 for i = 1,2. Indeed, H(S, f.G,,) = Pic(Y) = 0 (resp.
H%(S, f.G,,) = Br(Y) = 0) since Y is the disjoint union of spectra of local
(resp. strictly Henselian local) rings. Hence

(85) Pic(X) = H'(X,G,,) = H°(S, R' £.G,,).
A similar argument for f, shows

(36) Pic(X,) & H'(X,,G) = H(n, R f,Gom).
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We have a commutative diagram
HY(Xg, pp) = HO(S,R'foup) = H(S,R'f,G,)pr — Pic(X)
») | | |
HY (X, o)t = H°(n, R fopur) — H°(n, R'f.Gn)ir — Pic(X;)w

where the isomorphisms in the top row are given by proper base change, (84)
and (85) and in the bottom row by an elementary stalk computation, (84) and
(86). Passing to the inverse limit over v we are reduced to studying the map

(87) lim Pie(X);» =: Tj Pic(X) — Tj Pic(Xy) := lim Pic(X )
and the proof of ¢) for ¢ = 1 is then finished by the following Lemma. O

LEMMA 13. The map (87) is injective with finite cokernel.
Proof. Since X is regular and X, is an open subscheme the map
Pic(X) = Cl(X) — CIl(X,)) = Pic(X,)

is surjective and its kernel K is the subgroup of Cl(X) generated by divisors
supported in the closed subscheme X5z C X, hence is a finitely generated abelian
group [22][I1.6]. By the snake lemma we obtain an exact sequence

(88) 0 = ;K — T, Pic(X) — T; Pic(X,)) — K 2 Pic(X)

where A = liﬂly A/l” denotes the I-completion of an abelian group A.

Let Pic’(X) C Pic(X) be the subgroup defined in [33][3.2 d)], i.e. the kernel
of the map

(89) Pic(X) = P(S) — (P/P")(5) x (P/P°)(n)

where P = Picy/g is the relative Picard functor of f [33][1.2] and P° is the
connected component of P restricted to schemes over § (resp. 71). Note that
over a field P is represented by a group scheme, locally of finite type, hence
has a well defined connected component. By [33][Thm. 3.2.1] the target group
in (89) - the product of the Neron-Severi groups of the geometric fibres - is
finitely generated, hence so is Pic(X)/Pic’(X).

By [33][Thm. 6.4.1] - and this is the key fact in the proof- the group KNPic’(X)
is finite. In the notation of loc. cit. we have K = E(S) by Prop. 6.1.3 and
Pic’(X) = P%(S) € P7(S). Hence the kernel of K — Pic(X)/Pic’(X) is
finite and since both groups are finitely generated, so is the kernel on their
l-completions. But this means that the map p in (88) has finite kernel which
proves the Lemma. O
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10.2. p-ADIC COHOMOLOGY. In this section we assume that K has charac-
teristic 0 and for simplicity also that k& = F,. For [ = p one still has the
specialisation map

(90) sp: H'(X5,Qp) — H'(X5,Qp)"

since proper base change holds for arbitrary torsion sheaves. However, it is
well known that p-adic étale cohomology of varieties in characteristic p only
captures the slope 0 part of the full p-adic cohomology, which is Berthelot’s rigid
cohomology Hfil-g (Xs/k) (for proper X this follows from [3, Thm. 1.1] and [23,
Prop. 3.28, Lemma 5.6]). Here the slope 0 part Vs1°P¢0 of a finite dimensional
Qp-vector space V' with an endomorphism ¢ is the maximal subspace on which
the eigenvalues of ¢ are p-adic units. One knows that the eigenvalues of ¢ on
H},;,(X,/k) are Weil numbers, and a proof similar to that of Lemma 12 shows

that the same is true for Dz (H* (X5, Qp)), and hence for
DcriS(Hi(Xﬁ’ Qp)) = Dst(Hi(Xﬁ7Qp))N:O = Dpst(Hi(Xﬁva))I’NZO'
Therefore one deduces weight filtrations on both spaces.

In analogy with the l-adic situation one might make the following conjecture.

CONJECTURE 6. Let X — S be proper, flat and generically smooth. Then there
18 a ¢-equivariant specialization map

Hi

rig

(Xs/k) == Deris(H' (X5, Qp))
and a commutative diagram of Gal(k/k)-modules

Hi(X§va) R Hi(Xﬁ’Qp)I

N N
i Aur _SP'®1 4 Aur
Hm-g(Xs/k‘) ®Qp Qp e Dcm’s(H (an@p)) ®Qp Qp

where Qg’“ is the p-adic completion of the mazimal unramified extension of Q.
Moreover, the vertical maps induce isomorphisms

At HY(X5,Q,) 2 (Hiy (X, /k) ®g, QUr)e®s=t = [

rig rig

(Xs/k)slope 0
and

Ay o HY (X, Q)" 2 (Deris(H'(Xg, Qp))®0, Q") =" & Doy (H' (X5, Q)P ]}

Note here that for any ¢-module D the Gal(k/k)-module (D ®g, Qu7)¢®¢=1
can also be viewed as a ¢-module (via the action of ¢ ® 1) and as such is non-
canonically isomorphic to D°P¢. Moreover the action of Frob, U Gal(k/k)
coincides with that of 1® ¢~ ! = ¢ ® 1 = ¢.

The p-adic analogue of Theorem 10.1 (replacing a) by the conjectural local
theorem on invariant cycles) would be the following conjecture.

CONJECTURE 7. Assume that X is moreover reqular. Then the following hold.
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a) The map sp’ is surjective.
b) The map

Wilei (Xs/k) i) ilecris(Hi(Xﬁan))

rig
induced by sp’ is an isomorphism.

¢) The map sp’ is an isomorphism for i =0, 1.

Combining both conjectures we deduce the following statement for p-adic étale
cohomology.

CONJECTURE 8. If X is reqular then the map
Wis1H' (X5,Q,) = Wim  H (X5,Q,)!
induced by sp is an isomorphism.

Here we deduce the weight filtrations on H'(X5,Q,) and H(X;,Q,)! from
Conjecture 6 via the injectivity of the maps A, and A,. For the applications
in this paper we only need this isomorphism on Wy (or in fact on the still
smaller generalized eigenspace for the eigenvalue 1). For reference we record
this statement separately.

CONJECTURE 9. If X is reqular then the map
WoH' (Xs,Qp) = WoH' (X5, Qp)"

induced by sp is an isomorphism, where Wy is the sum of generalized ¢-
etgenspaces for eigenvalues which are roots of unity.

Again, if Conjecture 6 holds the maps A, and A, are injectve and it suffices to
establish an isomorphism

WoH?

rig

(Xs/k) 2 WoDeris(H (X35, Qp)).

We do not know how to establish Conjecture 6 or Conjecture 9 in general, since
it seems difficult to make use of the regularity assumption. In case X has semi-
stable reduction, however, it seems plausible that one can avoid any reference
to rigid cohomology and establish a commutative diagram of Gal(k/k)-modules

H'(X5,Qp) — H'(X5,Qp)"

’_\Sl ,\nl
(Hip e (Xo/R)V=0) @, Qv —2L D, (Hi(X7,Qp)) ®g, QU

where Hi; - (X;/k) is Hyodo-Kato cohomology. Contrary to what the notation
suggests this cohomology theory not only depends on X, /k but on the scheme
X/S. Building on work of Fontaine-Messing, Bloch-Kato, Hyodo-Kato, and
Kato-Messing, Tsuji [37] proved that there is an isomorphism of (¢, N)-modules

Hy e (Xo/k) = Dt (H' (X5, Qp))
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and hence an isomorphism of ¢-modules
H}iK(XS/k)N:O — Dst(Hi(Xﬁ,@p))NZO = DcriS(Hi(Xﬁa Qp))~

In addition to the commutative diagram it would then be enough to show that
As and A, are injective. We refrain from giving more details since in this paper
Conjecture 9 is only used in the proof of Proposition 9.2 (via Proposition 9.1)
which already needs to assume a host of other, much deeper conjectures that
we are unable to prove.
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