1. Let F be a local field (assume that $F = \mathbb{R}$ if you wish), and B the group of invertible 2×2 upper-triangular matrices with determinant 1 over the field F. The group B is a locally compact group. Calculate the modulus function $\Delta_B : B \rightarrow \mathbb{R}_{>0}$.

Answer: The answer is $\Delta_B(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}) = |a|^2$.

2. For $n \in \mathbb{Z}_{\geq 0}$, let V_n be an irreducible $(n + 1)$-dimensional representation of $SU(2)$.

(a) Show that V_2 is isomorphic to the complexified adjoint representation of $SU(2)$.

(b) Show that there exists a unique, up to scalar, non-zero bilinear $SU(2)$-invariant form B on V_n. In addition, show that this form is non-degenerate.

(c) Show that the form B is either symmetric, or anti-symmetric.

(d) Show that if n is even, B is symmetric.

(e) *(not for handing in)* Show that if n is odd, B is anti-symmetric.

Solution:

(a) All we have to show is that the complexified adjoint representation of $SU(2)$ is irreducible. This can be done by a concrete calculation.

(b) G-invariant bilinear forms are identified with elements of $\text{Hom}_G(V_n, V_n^*)$. This space is one-dimensional by Schur’s lemma, since V_n, V_n^* are irreducible of the same dimension, hence isomorphic by our classification of irreducibles of G. Moreover, a non-zero element in this Hom_G-space is an isomorphism by Schur’s lemma. This translates to the corresponding bilinear form being non-degenerate.

(c) We assume that B is non-zero of course. We can write $B = C + D$ where C is the symmetrization of B and D is the anti-symmetrization of B. Since by the previous item C, D are proportional to D, and since a
symmetric and anti-symmetric form is zero, we get that either C or D is zero, so $B = C$ or $B = D$, meaning B is symmetric or B is anti-symmetric.

(d) There are no non-degenerate anti-symmetric bilinear forms on even-dimensional vector spaces.

3. Show that the exponential map \exp for the Lie group $SL_2(\mathbb{R})$ is not surjective.

Solution: Recall that the Lie algebra of $SL_2(\mathbb{R})$ is the subalgebra of $M_2(\mathbb{R})$ consisting of matrices with trace zero. If a such a matrix A is triangulizable over \mathbb{R}, then $\exp(A)$ has positive eigenvalues. If A is not triangulizable, then it’s eigenvalues are $ib, -ib$ for some $0 \neq b \in \mathbb{R}$, so A is diagonalizable over \mathbb{C}, hence $\exp(A)$ is diagonalizable over \mathbb{C}. So, considering the matrix $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \in SL_2(\mathbb{R})$, which is neither with positive eigenvalues, nor is diagonalizable over \mathbb{C}, we see that it is not in the image of \exp.

4. For $n \in \mathbb{Z}_{\geq 0}$, Let V_n be an irreducible $(n+1)$-dimensional representation of $SU(2)$. Show that

$$V_n \otimes V_m \cong \bigoplus_{j=0}^{\min(n,m)} V_{n+m-2j}$$

(as representations of $SU(2)$).

Solution: We can work with the characters restricted to T. Denote by ζ a character generating the character lattice $X^*(T)$. Then χ_n, the character of V_n restricted to T, is equal to:

$$\chi_n = \zeta^n + \zeta^{n-2} + \ldots + \zeta^{-n} = \sum_{0 \leq i \leq n} \zeta^{n-2i}.$$

Let us say $m \leq n$. Then

$$\chi_n \chi_m = \sum_{0 \leq i \leq n} \zeta^{n-2i} \sum_{0 \leq j \leq m} \zeta^{m-2j} = \sum_{0 \leq i \leq n, 0 \leq j \leq m} \zeta^{n+m-2(i+j)} = \ldots$$

one proceeds combinatorially (imagining a grid, and ordering the points in it in a specific fashion); see for example the book by Brocker and Dieck, chapter II, section 5, proposition (5.5) (page 87).