Representation theory of compact groups -
Homework 04

Alexander Yom Din
March 8, 2017

Write solutions to all of the following problems. Due date: 03/17/17.
Please ask me if you are not sure about the terminology or anything else in
the problems.

1. Let $G = SU(n)$ and $T \subset G$ the subgroup of diagonal matrices.

 (a) Give a concrete parametrization of the set of roots $R \subset \mathfrak{t}^*$, a concrete
description of the Weyl group W, and a concrete description of the
action of W on R.

 (b) Describe a choice of positive roots $R^+ \subset R$, and show what is the
corresponding set of simple roots $S \subset R^+$.

 (c) Describe concretely, in terms of your concrete description of W, what
is the element $w_0 \in W$ which satisfies $\ell(w_0) = |R^+|$ (the longest
element).

2. Let $G = SU(n)$ and $T \subset G$ the subgroup of diagonal matrices. Construct
a bijection between G/T and the set of flags in \mathbb{C}^n, i.e. $(n+1)$-tuples
of subvectorspaces of \mathbb{C}^n, (V_0, V_1, \ldots, V_n), such that $V_i \subset V_{i+1}$ for all
$0 \leq i \leq n - 1$ and $\dim V_i = i$ for all $0 \leq i \leq n$ (you should prove that the
map you constructed is indeed a bijection).

3. Let G be a connected compact Lie group. Suppose that G is not abelian.

 (a) Show that G has irreducible representations of arbitrarily high dimen-
sion.

 (b) Show that if G is semisimple (i.e. the center $Z(G)$ is finite), then G
has only finitely many non-isomorphic irreducible representations of
any given dimension.

 (c) Show that if G is not semisimple, then G has infinitely many non-
isomorphic irreducible representations of dimension 1.