Math 120b Galois Theory
Homework Set 3
Due Friday 2/24/17 at 5pm

In the problems below, an extension of G by A is a group fitting in a short exact sequence

$$1 \to A \to H \to G \to 1.$$

Two such extensions are isomorphic if there is a map of short exact sequences agreeing with the identity on A and G.

1. (a) Show that for any finite field, $H^l(F_q; G_m) = 0$ for $l > 0$. (b) Conclude that any finite division ring is a field. (Here you may assume that every division algebra is a central simple algebra as we have defined it.)

2. Here we show that extensions of a group G by an abelian group A with fixed (outer) action are classified by $H^2(G; A)$, and construct the connecting map.

 (a) There is a natural bijection between $Z^2(G; A)$ and extensions equipped with a set map $G \to H$ taking e to e.

 (b) Changing the set map changes the cocycle by an arbitrary coboundary, and thus two extensions are isomorphic iff the cohomology classes agree.

 (c) Although extensions are classified by $H^2(G; A)$ up to isomorphism, they are not in general classified up to unique isomorphism. Show that any element of $Z^1(G; A)$ induces an automorphism of H as an extension of G by A.

 (d) Given two extensions H, H', there is an extension of G by $A \times A$ given as the group of pairs (h, h') mapping to the diagonal in G. If we quotient by the diagonal, we get a new extension of G by A. How does this operation act on $H^2(G; A)$?

 (e) Let B be a group with a G-action such that $A \subset Z(B)$ (as G-groups), and consider subgroups $H \subset B \rtimes G$ such that $H \cap B = A$ and the induced map from $H \to G$ is surjective. Show that the set of such subgroups is naturally bijective with $Z^1(G; B/A)$, and show that the induced map $Z^1(G; B/A) \to H^2(G; A)$ (viewing H as an extension of G by A) is precisely the connecting map.

3. Suppose A is an abelian group and G a group of order prime to $|A|$. Show that any extension of G by A splits.