1. Let k be a field of characteristic p, and let t, u be algebraically independent over k. Show that

(a) $k(t, u)$ has degree p^2 over $k(t^p, u^p)$.

(b) If $v \in k(t, u) \setminus k(t^p, u^p)$, then $k(t^p, u^p, v)$ has degree p over $k(t^p, u^p)$

Conclude that the finite extension $k(t, u)/k(t^p, u^p)$ cannot be generated by a single element, and that there are infinitely many intermediate extensions.

2. Show if k is a finite field of order p^n, then every element of k has a unique p-th root.

3. Let $L \cong \mathbb{Q}[\alpha]/(\alpha^4 + 20)$, and let $K \subset L$ be the subfield generated by α^2. Show that L/K and K/\mathbb{Q} are normal, but L/\mathbb{Q} is not.

4. Let $E = F(x)$ where x is transcendental over F.

(a) Let K be a subfield of E strictly containing F. Show that E/K is an algebraic extension.

(b) Let $\frac{f(x)}{g(x)} \in E \setminus F$ with $\gcd(f, g) = 1$. Show that E is algebraic over $F(\frac{f(x)}{g(x)})$ of degree $\max(\deg(f), \deg(g))$.

5. Let $f \in k[x]$ be an irreducible polynomial of prime degree p such that $K \cong k[x]/f(x)$ is a separable extension. Show that if f has more than one root in K, then f splits and K/k is Galois.

6. Let k be a field of characteristic not 2, and suppose $E/F/k$ is a tower of extensions given by $F = k(\sqrt{c})$, $E = F(\sqrt{a + b\sqrt{c}})$ for $a, b, c \in k$. Show that the following are equivalent:

- E/k is Galois
- There is an element $\beta \in E$ such that $\beta^2 = a - b\sqrt{c}$.
- $a^2 - cb^2 \in k^2$ or $c(a^2 - cb^2) \in k^2$.

In the two cases corresponding to the last condition, compute the Galois group of E/k. If E/k is not Galois, what is the Galois group of its Galois closure?