HOMEWORK QUESTIONS FOR MA 110B

Homeowrk 1 (due by Friday Feb 3)

1. Suppose \(f \) is an entire function, and
\[
|f(z)| \leq A + B|z|^k,
\]
for every \(z \in \mathbb{C} \), where \(A, B \) and \(k \) are positive numbers. Prove that \(f \) is a polynomial.

2. Suppose \(f_n \) is a uniformly bounded sequence of holomorphic functions in a domain \(\Omega \) such that \(f_n(z) \) converges for every fixed \(z \in \Omega \). Prove that the convergence is uniform on every compact subset of \(\Omega \).

3. Let \(\gamma \) denote the positively oriented unit circle. Compute
\[
\frac{1}{2\pi i} \int_{\gamma} \frac{e^z - e^{-z}}{z^4} \, dz.
\]

4. Suppose \(f_n \) are holomorphic functions on a domain \(\Omega \), and that none of the functions \(f_n \) has a zero in \(\Omega \). If \(f_n \) converges to a function \(f \) uniformly on compact sets in \(\Omega \), prove that either \(f \) has no zeroes or \(f(z) = 0 \) for every \(z \in \Omega \).

5. Suppose a domain \(\Omega \) contains the unit disc. Let \(f \) be holomorphic on \(\Omega \) and \(|f(z)| < 1 \) when \(|z| = 1 \). How many fixed points must \(f \) have in the unit disc (that is, how many solutions \(f(z) = z \) there are)?

6. Suppose \(f \) is holomorphic on \(\Omega \) and that \(\Omega \) contains the unit disc. Assume in addition that \(|f(z)| > 2 \) when \(|z| = 1 \) and \(f(0) = 1 \). Does \(f \) need to have a zero in the unit disc.

7. Denote by \(\mathbb{H} \) the upper half plane. Let \(f : \mathbb{H} \to \mathbb{C} \) be holomorphic and \(|f(z)| \leq 1 \) for \(z \in \mathbb{H} \). How large can \(|f'(i)| \) be. Find the extremal functions (namely those where \(|f'(i)| \) is maximized).
8. Suppose Ω is a bounded domain and f_n a sequence of holomorphic functions defined on some neighborhood of $\overline{\Omega}$. Prove that if f_n converges uniformly on the boundary of Ω, then f_n converges uniformly on $\overline{\Omega}$.

Homeowork 2 (due by Friday Feb 17)

1. Prove that if f is holomorphic and has no zeroes on a domain Ω, then the function $u(z) = \log |f(z)|$ is harmonic on Ω.

2. Suppose that $u(z)$ is a positive harmonic function on the unit disc \mathbb{D} and $u(0) = 1$. How small can $u\left(\frac{1}{2}\right)$ be? How large can $u\left(\frac{1}{2}\right)$ be?

3. Let $\Omega = \{z \in \mathbb{C} : \text{Re}(z) > 0\}$. Let f be holomorphic on Ω and continuous on the closure $\overline{\Omega}$. Suppose that there are constants $A > 0$ and $0 < \alpha < 1$ such that

$$|f(z)| \leq Ae^{|z|^\alpha},$$

for every $z \in \Omega$, and $|f(iy)| \leq 1$ for every $y \in \mathbb{R}$. Show $|f(z)| \leq 1$ for every $z \in \Omega$.

4. Let f be holomorphic on the unit disc \mathbb{D}. Find a sequence $z_n \in \mathbb{D}$ such that

$$\lim_{n \to \infty} |z_n| = 1,$$

and

$$|f(z_n)| < M,$$

for every $n \in \mathbb{N}$ and some $M > 0$.

5. Is there a sequence of polynomials $P_n(z)$ such that

$$\lim_{n \to \infty} P_n(z) = \psi(z), \quad z \in \mathbb{C},$$

where $\psi(z) = 1$ for $\text{Re}(z) > 0$, $\psi(z) = -1$ for $\text{Re}(z) < 0$, and $\psi(z) = 0$ for $\text{Re}(z) = 0$.

6. Let $P_n(z)$ be a sequence of polynomials such that
\[
\lim_{n \to \infty} P_n(z) = \psi(z), \quad \text{for every } z \in \mathbb{C},
\]
for some function $\psi: \mathbb{C} \to \mathbb{C}$. Show that ψ is holomorphic on an open and dense subset of \mathbb{C}.

7. Let $z_1, z_2 \in \mathbb{D}$ and set $\Omega = \mathbb{D} \setminus \{z_1, z_2\}$. Describe the group $\text{Aut}(\Omega)$.

8. Let $f: \mathbb{D} \to \mathbb{D}$ be a Möbius transformation. Let
\[
f_n(z) = (f \circ \cdots \circ f)(z), \quad (n \text{ times}).
\]
Does the limit
\[
\lim_{n \to \infty} f_n(z),
\]
exist for every $z \in \mathbb{D}$? Characterize all such f so that the above limit exists for every $z \in \mathbb{D}$.

Homework 3 (due by Friday March 3)

1. If $f, g \in \text{PSL}(2, \mathbb{C})$ are different than the identity, then f is conjugate to g in $\text{PSL}(2, \mathbb{C})$ if and only if $\text{trace}(f) = \text{trace}(g)$.

2. [This questions carries double credit] Suppose R is a rational function such that $|R(z)| = 1$ when $|z| = 1$. Prove that
\[
R(z) = C z^m \prod \frac{z - a_n}{1 - \overline{a}_n z},
\]
where c is a constant, m an integer, and a_n are complex numbers different than zero and $|a_n| \neq 1$. Obtain an analogous description of those rational functions which are positive on the unit circle $\partial \mathbb{D}$.

3. Let $\Omega \subset \mathbb{C}$ be a region whose boundary consists of two non-intersecting circles (not necessarily concentric). Prove that there exists a conformal map $f: \Omega \to A(R)$, for some $A(R) = \{1 < |z| < R\}$, $R > 0$.

4. Suppose Ω is a convex region, $f: \Omega \to \mathbb{C}$ holomorphic, and $\text{Re}[f'(z)] > 0$, for all $z \in \Omega$. Prove that f is injective.
5. Suppose $f_n, f: \Omega \to \mathbb{C}$ are holomorphic and $f_n \to f$ uniformly on compact sets in Ω and that f is injective. Does it follow that for each compact set $K \subset \Omega$ there exists an integer $N(K) > 0$ such that the mappings f_n are injective on K for all $n > N(K)$?

6. Suppose $\Omega = \{x + iy : -1 < y < 1\}$ and $f: \Omega \to \mathbb{D}$ is holomorphic such that $f(x) \to 0$ when $x \to \infty$. Prove that
\[
\lim_{x \to \infty} f(x + iy) = 0,
\]
for every $y \in (-1, 1)$.

7. Recall that $f \in S$ if $f: \mathbb{D} \to \mathbb{C}$,
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]
and f is injective on \mathbb{D}. Find all $f \in S$ so that $\mathbb{D} \subset f(\mathbb{D})$. Also find all $f \in S$ such that $|a_2| = 2$.

Homeowork 4 (due by Friday March 17)

1. For $z \in \overline{\mathbb{D}}$ and $z^2 \neq 1$, we let
\[
f(z) = e^{\frac{i\pi z}{1-z}},
\]
by choosing a branch of log that has log 1 = 0. Describe the set $f(E)$ if E is one of the following: $E = \mathbb{D}$; E is the upper half of the circle $\{|z| = 1\}$; E is the lower half of the circle $\{|z| = 1\}$; E is any disc $\{z : |z - r| < 1 - r\}$, for $0 < r < 1$.

2. Let $\Omega \subset \mathbb{C}$ be a simply connected region and $u: \Omega \to \mathbb{R}$ a harmonic function. Prove that there exists a holomorphic function $f: \Omega \to \mathbb{C}$ such that the real part of f is equal to u. Show that this fails in every region that is not simply connected.

3. Prove that the Möbius transformations $z \to z + 1$ and $z \to -\frac{1}{z}$, generate the group $\text{PLS}(2, \mathbb{Z})$.

4. (This question carries double credit) Let $E \subset \mathbb{R}$ be a compact set of positive 1-dimensional Lebesgue measure and $\Omega = \mathbb{C} \setminus E$. Set
\[
f(z) = \int_{E} \frac{dt}{t - z}
\]
for $z \in \Omega$. Answer the following questions:
(1) Is \(f \) constant?
(2) Can \(f \) be extended to an entire function?
(3) Does
\[
\lim_{z \to \infty} zf(z)
\]
exists. If so, what is it?
(4) What is
\[
\int_{\gamma} f(z) \, dz
\]
if \(\gamma \subset \Omega \) is positively oriented circle which has \(E \) in its interior?
(5) Does there exists a bounded holomorphic function on \(\Omega \) which is non-constant?

5. We say that an entire function \(f \) is of finite order if the inequality
\[
|f(z)| \leq e^{\lambda |z|},
\]
holds for all \(z \in \mathbb{C} \) when \(|z| \) is large enough. Let \(z \in A \) if
\[
e^{e^z} = 1.
\]
Show that no (non-constant) entire function that has zeroes at all points in \(A \) can be of finite order.

6. Suppose \(f \) is an entire function, \(f(0) \neq 0 \), and
\[
|f(z)| \leq e^{p |z|},
\]
when \(|z| \) is large enough. Denote by \(z_n \) the zeroes of \(f \) (counted according to their multiplicities). Prove that the series
\[
\sum_{n=1}^{\infty} |z_n|^{-p-\epsilon}
\]
converges for every \(\epsilon > 0 \).

7. Set \(\alpha_n = 1 - n^{-2} \), \(n \in \mathbb{N} \), and let \(B(z) \) denote the Blaschke product with zeroes at the points \(\alpha_n \). Prove
\[
\lim_{r \to 1} B(r) = 0,
\]
where \(0 < r < 1 \).