HOMEWORK QUESTIONS FOR MA 110B

HOMEWORK 1 (DUE BY FRIDAY FEB 3)

1. Suppose \(f \) is an entire function, and
\[
|f(z)| \leq A + B|z|^k,
\]
for every \(z \in \mathbb{C} \), where \(A, B \) and \(k \) are positive numbers. Prove that \(f \) is a polynomial.

2. Suppose \(f_n \) is a uniformly bounded sequence of holomorphic functions in a domain \(\Omega \) such that \(f_n(z) \) converges for every fixed \(z \in \Omega \). Prove that the convergence is uniform on every compact subset of \(\Omega \).

3. Let \(\gamma \) denote the positively oriented unit circle. Compute
\[
\frac{1}{2\pi i} \int_{\gamma} \frac{e^z - e^{-z}}{z^4} \, dz.
\]

4. Suppose \(f_n \) are holomorphic functions on a domain \(\Omega \), and that none of the functions \(f_n \) has a zero in \(\Omega \). If \(f_n \) converges to a function \(f \) uniformly on compact sets in \(\Omega \), prove that either \(f \) has no zeroes or \(f(z) = 0 \) for every \(z \in \Omega \).

5. Suppose a domain \(\Omega \) contains the unit disc. Let \(f \) be holomorphic on \(\Omega \) and \(|f(z)| < 1 \) when \(|z| = 1 \). How many fixed points must \(f \) have in the unit disc (that is, how many solutions \(f(z) = z \) there are)?

6. Suppose \(f \) is holomorphic on \(\Omega \) and that \(\Omega \) contains the unit disc. Assume in addition that \(|f(z)| > 2 \) when \(|z| = 1 \) and \(f(0) = 1 \). Does \(f \) need to have a zero in the unit disc.

7. Denote by \(\mathbb{H} \) the upper half plane. Let \(f : \mathbb{H} \to \mathbb{C} \) be holomorphic and \(|f(z)| \leq 1 \) for \(z \in \mathbb{H} \). How large can \(|f'(i)| \) be. Find the extremal functions (namely those where \(|f'(i)| \) is maximized).
8. Suppose Ω is a bounded domain and f_n a sequence of holomorphic functions defined on some neighborhood of Ω. Prove that if f_n converges uniformly on the boundary of Ω, then f_n converges uniformly on Ω.

Homework 2 (due by Friday Feb 17)

1. Prove that if f is holomorphic and has no zeroes on a domain Ω, then the function $u(z) = \log |f(z)|$ is harmonic on Ω.

2. Suppose that $u(z)$ is a positive harmonic function on the unit disc \mathbb{D} and $u(0) = 1$. How small can $u\left(\frac{1}{2}\right)$ be? How large can $u\left(\frac{1}{2}\right)$ be?

3. Let $\Omega = \{z \in \mathbb{C} : \text{Re}(z) > 0\}$. Let f be holomorphic on Ω and continuous on the closure $\overline{\Omega}$. Suppose that there are constants $A > 0$ and $0 < \alpha < 1$ such that

$$|f(z)| \leq Ae^{\alpha|z|},$$

for every $z \in \Omega$, and $|f(iy)| \leq 1$ for every $y \in \mathbb{R}$. Show $|f(z)| \leq 1$ for every $z \in \Omega$.

4. Let f be holomorphic on the unit disc \mathbb{D}. Find a sequence $z_n \in \mathbb{D}$ such that

$$\lim_{n \to \infty} |z_n| = 1,$$

and

$$|f(z_n)| < M,$$

for every $n \in \mathbb{N}$ and some $M > 0$.

5. Is there a sequence of polynomials $P_n(z)$ such that

$$\lim_{n \to \infty} P_n(z) = \psi(z), \quad z \in \mathbb{C},$$

where $\psi(z) = 1$ for $\text{Re}(z) > 0$, $\psi(z) = -1$ for $\text{Re}(z) < 0$, and $\psi(z) = 0$ for $\text{Re}(z) = 0$.
6. Let \(P_n(z) \) be a sequence of polynomials such that
\[
\lim_{n \to \infty} P_n(z) = \psi(z), \quad \text{for every } z \in \mathbb{C},
\]
for some function \(\psi : \mathbb{C} \to \mathbb{C} \). Show that \(\psi \) is holomorphic on an open and dense subset of \(\mathbb{C} \).

7. Let \(z_1, z_2 \in \mathbb{D} \) and set \(\Omega = \mathbb{D} \setminus \{z_1, z_2\} \). Describe the group \(\text{Aut}(\Omega) \).

8. Let \(f : \mathbb{D} \to \mathbb{D} \) be a Möbius transformation. Let
\[
f_n(z) = (f \circ \cdots \circ f)(z), \quad (n \text{ times}).
\]
Does the limit
\[
\lim_{n \to \infty} f_n(z),
\]
exist for every \(z \in \mathbb{D} \)? Characterize all such \(f \) so that the above limit exists for every \(z \in \mathbb{D} \).