Problem 7 solutions

2) (⇒) Suppose \(S \) is oriented.

⇒ \(\exists \) a unit normal vector field \(\mathbf{N} \) along \(\partial S \).

Then \(V = \{(p + t \mathbf{N}(p)) : t \in \mathbb{R}, p \in S \} \) for some \(\varepsilon > 0 \).

⇒ \(V' = \{(p + \varepsilon \mathbf{N}(p)) : p \in S \} \cup \{(p - \varepsilon \mathbf{N}(p)) : p \in S \} \) for some \(\varepsilon \in \mathbb{R} \).

\(S_i \) \(\Rightarrow \) \(S \), \(i \) differ onto its rings for \(i = 1, 2 \).

Let \(\psi : S \to \mathbb{R} \) be a diffeo onto its rings for \(i = 1, 2 \).

\(\psi \equiv \{(p + \varepsilon \mathbf{N}(p)) \}

Since \(\varepsilon < \varepsilon \), \(S_1 \cap S_2 = \emptyset \), so \(V' \) has two connected components, each of which is diffeo to \(S \).

(⇐) Suppose \(V' \) is not connected.

Claim: \(V' \) has exactly two connected components.

\(\mathcal{U} \): Let \(V_1 \) be a connected component of \(V' \).

Let \(f : V_1 \to \mathcal{C}(S) \)

\((p + \varepsilon \mathbf{N}(p)) \mapsto (p) \).

We will first show that \(f \) is surjective. Suppose not. Let \(p_0, q_0 \in S \) s.t. \((p_0) \) lies in the image of \(f \), while \((q_0) \) does not, and let \(\gamma : [0,1] \to S \) be a smooth path from \(p_0 \) to \(q_0 \). Let \(t_0 \in [0,1] \) s.t. \(\gamma(t_0) \notin \text{Im}(f) \) but \(\phi(1) \in \text{Im}(f) \) \(\forall 1 < 0 \).

(This exists \(\Rightarrow \) \(f \) is a local diffeo)

Let \(U \subseteq S \) be an orientable null of \(\gamma(t_0) \). Then for \(s < t \) and suff. close \(t \) to \(t_0 \), there is a smooth curve \(\eta : [s, t] \to U \) s.t. \(\eta(1) = \gamma(t_0) \).

Hence, \(\eta(1) = \gamma(t_0) \neq \eta(1) \) for some unit normal vector field \(N(x) \).
along \(\gamma(S) \). Let \(\gamma(t_0) := \gamma(t_0) \cdot (1 - N'\gamma(t_0)) \), and note that \(N'(\gamma(t_0)) = \nu'(t_0) \cdot \gamma'(t_0) \) is continuous. However, this contradicts \(\gamma(t_0) \in \text{Im}(f) \).

\(f \) is surjective.

Note that \(f: \mathcal{W} \to S \) is a 2:1-map.

Also, \(f \) restricted to each component of \(\mathcal{W} \) is surjective, so \(\mathcal{W} \) must have at most two connected components. Since \(\mathcal{W} \) is not connected, it has exactly two connected components. Since \(f \) restricted to each of these components is surjective, it is also injective on each of these components.

For \(\gamma \in S \), define \(N(\gamma) := (\gamma'(\gamma))^\tau \cdot (\gamma(\gamma)) - (\gamma(\gamma) \in \mathbb{R}^3). \) Note that \(N \) is a smooth normal vector field along \(\gamma(S) \), so \(S \) is orientable.

3) \(N(\gamma, \nu) = \frac{\left(\frac{\partial y}{\partial x} \right) \times \left(\frac{\partial v}{\partial x} \right)}{\sqrt{1 + \left(\frac{\partial y}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2}} \)

\[= \left(\begin{array}{c} \frac{\partial y}{\partial x} \\ \frac{\partial v}{\partial x} \\ 0 \end{array} \right) \]

\[\vdash \left(\frac{1}{2} N \right) \left(\gamma(\gamma) \right) = \left(\begin{array}{c} -s' \gamma(t) \\ 0 \\ 0 \end{array} \right) \bigg|_{(\gamma(\gamma), (\gamma(\gamma)) = (\gamma, \gamma)} = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \]

\[\vdash L_{\gamma(0), \gamma(0)} \left(\frac{1}{2} N \right) \left(\gamma(0, 1) \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \]

\[\vdash L_{\gamma(0), \gamma(0)} \left(\frac{1}{2} N \right) \left(\gamma(0, 1) \right) + b \left(\frac{1}{2} N \right) \left(\gamma(0, 1) \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \]
5) Choose local coordinates about \(y(0) \).

Then \(\langle q'(t), N(y(t)) \rangle = 0 \quad \forall t \in I. \)

\[\Rightarrow \langle q''(t), N(y(t)) \rangle + \langle q'(t), L_{x(0)}(y(t)) \rangle = 0 \]

\[\Rightarrow \Pi_{x(0)}(y(t)) = \langle q''(t), N(y(t)) \rangle. \quad \square \]

6) Suppose that \(q''(0) = 1\|q''(0)\| \cdot N(y(0)) \), where \(y(0) = y \).

Problem 5 \(\Rightarrow \quad |\Pi_{x(0)}(y'(0))| = |\langle q''(0), N(y(0)) \rangle| = \|q''(0)\| \)

\[\therefore \text{It is sufficient to show that } q''(0) = 1\|q''(0)\| \cdot N(y(0)) \]

Since \(q \) lies in \(P \), so does \(q''(0) \).

\[\langle q''(0), q'(0) \rangle = c \quad \text{for some constant } c. \]

\[\Rightarrow \langle q''(0), q'(0) \rangle = 0. \]

\[\therefore q''(0) \perp q'(0). \]

\[\Rightarrow q''(0) = k \cdot N(y(0)) \quad \because N(y(0)) \in P \quad \text{and } \perp \quad q'(0). \]

\[= \|q''(0)\| N(y(0)) \quad \because N(y(0)) \text{ is unit.} \quad \square \]