1. Show that if \(\phi_1 : U_1 \rightarrow S \) and \(\phi_2 : U_2 \rightarrow S \) are diffeomorphisms onto a domain \(U \subset S \), then the area of \(\phi_1 \) and the area of \(\phi_2 \) are equal.

2. Let \(\phi : S^2 \rightarrow \mathbb{R}^3 \) be the map given by \(\phi : (x, y, z) \mapsto (3x, 2y, z) \). Compute the first fundamental form and the area of \(\phi \).

3. Let \(\gamma : (-3\pi, \frac{\pi}{3}) \rightarrow S^2 \) be the map given by
 \[
 \gamma : t \mapsto \left(\frac{t}{3\pi} \cos t, \frac{t}{3\pi} \sin t, \sqrt{1 - \frac{t^2}{9\pi^2}} \right).
 \]
 Compute the length of \(\gamma \).

4. Show that every smooth surface has a non-zero vector field.

5. Let \(S \) be a smooth surface and \(\phi : S \rightarrow \mathbb{R}^3 \) be a smooth immersion. Show that \(S \) is orientable if and only if there is a smooth vector field \(X \) along \(\phi(S) \) so that
 \[
 \begin{align*}
 &\bullet \ X(p) \neq 0 \text{ for all } p \in S. \\
 &\bullet \ \langle X(p), V \rangle_{\phi(p)} = 0 \text{ for all } V \in \phi_*p(T_pS).
 \end{align*}
 \]
 Here, \(\langle \cdot, \cdot \rangle_{\phi(p)} \) is the standard inner product on \(T_{\phi(p)}\mathbb{R}^3 \).
 Hint: Use partitions of unity.

6. Use Problem 5 to show that \(S^2 \) is orientable, and that the Möbius strip \(((0, 1) \times [0, 1])/(y, 0) \sim (1 - y, 1) \) is not orientable.

7. Show that there are only two (equivalence classes of) orientations on any connected orientable smooth surface.

8. Let \(\phi : S_1 \rightarrow S_2 \) be a diffeomorphism.
 (a) Prove that given an orientation on \(S_1 \), \(\phi \) induces an orientation on \(S_2 \).
 (b) Suppose \(S_1 = S_2 = S \). Is the orientation induced by \(\phi \) and the orientation we started with necessarily equivalent? If so, prove it, and if not, give an example.