Kuratowski’s Theorem

Theorem. A graph is planar if and only if it does not have K_5 and $K_{3,3}$ as topological minors.

- We know that if a graph contains K_5 or $K_{3,3}$ as a topological minor, then it is **not planar**.
- It remains to prove that every non-planar graph contains such a topological minor.

Kazimierz Kuratowski
Reminder: Topological Minors

- A graph H is a *topological minor* of a graph G if G contains a subdivision of H as a subgraph.

![Diagram of topological minor](image1)

Reminder: Kuratowski Subgraphs

- Given a graph G, a *Kuratowski subgraph* of G is a subgraph that is a subdivision of K_5 or $K_{3,3}$.

![Diagram of Kuratowski subgraph](image2)
3-Connectedness

- **Lemma.** Let $G = (V, E)$ be a graph with fewest edges among all non-planar graphs without a Kuratowski subgraph. Then G is 3-connected.
 - We proved this lemma in the previous class.
 - To complete the proof of Kuratowski’s Theorem, we prove that every 3-connected graph without a Kuratowski subgraph is planar.

Already Proved

- **Lemma A.** Let $G = (V, E)$ be a 3-connected graph with $|V| \geq 5$. Then there exists an edge $e \in E$ whose contraction results in a 3-connected graph.
- **Lemma B.** Let $G = (V, E)$ be a graph with no Kuratowski subgraph. Then contracting any edge $e \in E$ gives a graph with no Kuratowski subgraph.
Recall: Convex Polygons

• A polygon is *convex* if no line segment between two of its vertices intersects the outside of the polygon.
• Equivalently, every interior angle of a convex polygon is smaller than π.

Convex Polygons

Convex

Not Convex

Convex Embeddings

• A *convex embedding* of a planar graph G is a plane graph of G with all the edges being straight-line segments and in which the boundary of every face is convex.

 ◦ We now investigate which planar graphs have a convex embedding.
Convex Embeddings and Connectivity

- It is known that the planar graph $K_{2,4}$ has no convex embedding. The connectivity of $K_{2,4}$ is 2.
 - On the other hand, for 3-connected graphs this cannot be the case.

3-connected Graph and Convex Embeddings

- **Theorem (Tutte).** If $G = (V, E)$ is 3-connected and contains no Kuratowski subgraph, then G has a convex embedding with no three vertices on a line.
 - This implies that G is planar, and thus completes the proof of Kuratowski’s theorem.
Proof

- We prove the claim by **induction on** \(|V|\).
 - **Induction basis.** The smallest 3-connected graph has four vertices.
 - The only 3-connected graph with four vertices:

![Diagram of a 4-vertex graph]

Induction Step

- **By Lemma A**, since \(G\) is 3-connected, there exists an edge \(e\) whose contraction results in a 3-connected graph \(G_e\).
 - **By Lemma B**, \(G_e\) also has no Kuratowski subgraph.
 - **By the induction hypothesis**, there is a convex embedding of \(G_e\) with no three points on a line.
Induction Step (cont.)

- Let \(z \) be the vertex of \(G_e \) obtained by contracting \(e = (x, y) \).
 - Since \(G_e \) is 3-connected, removing \(z \) results in a face \(f \) with a boundary that is a polygon.
 - Since \(G_e - z \) is 2-connected, the boundary of \(f \) is connected.
 - If a vertex \(v \) of this polygon is connected to \(z \) in \(G_e \), then \(v \) is connected to \(x \) or to \(y \) (or to both) in \(G \).

A Convex Embedding of \(G \)

- Let \(x_1, \ldots, x_k \) be the neighbors of \(x \), arranged in a cyclic order according to their position in \(f \).
- If every neighbor of \(y \) is between \(x_i \) and \(x_{i+1} \) (possibly including \(x_i \) and \(x_{i+1} \)), we can expand \(e \) back and obtain a convex embedding of \(G \).
Two Remaining Cases

- Two cases remain:
 - x and y have at least three common neighbors.
 - There are vertices x_i, y_j, x_k, y_ℓ in this order around the boundary.
- The first case cannot happen since it would imply that G contains a subdivision of K_5.

The Last Case

- It remains to consider the case where there vertices x_i, y_j, x_k, y_ℓ are in this order around the boundary.
 - This case also cannot happen, since then G would contain a subdivision of $K_{3,3}$.

$V_1 = \{x, y_1, y_2\}$
$V_2 = \{y, x_1, x_2\}$
Conclusion

• The only case that did not lead to a contradiction is the first one, in which we have a convex embedding of G.
 ◦ That is, there always exists a convex embedding of G.

Fáry’s Theorem

• Theorem. Any simple planar graph can be drawn without crossings so that its edges are straight line segments.
 ◦ We do not prove the theorem in this course.
Reminder: Map Coloring

• Can we color each face with one of four colors, so that no two adjacent faces have the same color?

Reminder: The Four Color Theorem

• **Theorem.** Every map has a 4-coloring.
 ◦ Asked over 150 years ago.
 ◦ Over the decades several false proofs were published.
 ◦ Proved in 1976 by **Appel and Haken.** Extremely complicated proof that relies on a computer program.
Map Coloring and Graphs

- Place a **vertex** in each **face**.
- Place an **edge** between any pair of vertices that represent **adjacent faces**.
 - **The problem.** Can we color the vertices using four colors, such that every edge is adjacent to two different colors?

Maps and Planar Graphs

- **A graph that is obtained from a map is planar** (we can easily draw non-crossing edges).
- Similarly, we can reduce the problem of coloring a planar graph G to a problem of coloring the faces of a map.
 - Coloring the **vertices of G** is equivalent to coloring the **faces of the dual graph** G^*.
Coloring Planar Graphs

- Since coloring planar graphs and coloring maps are equivalent problems, the four color theorem states that every planar graph can be colored with four colors.
 - This proof is too complicated for us (or for any living person...).
 - Instead, we prove that every planar graph can be colored by using five colors.

Warm Up Problem

- **Problem.** Prove that any planar graph $G = (V, E)$ can be colored by using six colors.

- **Hint.** Recall a planar graph has at most $3|V| - 6$ edges.
Proof by Induction

- We prove the claim by induction on $|V|$.
 - Since $|E| \leq 3|V| - 6$, the average degree is $\frac{2|E|}{|V|} \leq 6 - \frac{12}{|V|}$.
 - Thus, there is a vertex $v \in V$ of degree smaller than six in G.
 - We remove v to obtain the planar graph $G_1 = (V_1, E_1)$. By the hypothesis, G_1 can be colored using six colors.
 - We place v back. Since the degree of v is at most five, there is a valid color for it.

Five Colors

- **Problem.** Prove that any planar graph $G = (V, E)$ can be colored by using five colors.
Proof by Induction

- We start in the same way: Proof by induction on $|V|$.
 - There is a vertex $v \in V$ of degree at most five in G.
 - We remove v to obtain the planar graph $G_1 = (V_1, E_1)$. By the hypothesis, G_1 can be colored using five colors.
 - We place v back. If it is of degree at most four, we can color it. **What if v is of degree five?**

The Case of Degree 5

- Consider the case where v is of degree 5 and each of its neighbors is of a different color.
 - If removing v disconnects G, we can permute the colors in one of the components.
The Problematic Case

- A neighbor a of v is colored with color 1, and we would like to change it to color 2.
 - Let b be a neighbor of v with color 2.
 - A problem occurs if there is a path between a and b that is alternately colored using colors 1 and 2.

The Problematic Case (cont.)

- It two neighbors of v do not have an alternating chain between them, we can give both the same color, and then color v.
 - It is impossible to have both an a-c alternating chain and a b-d alternating chain without the two crossing.
 - Thus we can always color v, which completes the proof.
The End

DAMN IT, WILLIAMS. STOP PLAYING VIDEO GAMES AT WORK!

 Gimme a sec. I just have to fight this Boss.

Alright, I'm back.