Recall: Plane Graphs

- A plane graph is a drawing of a graph in the plane such that the edges are non-crossing curves.
Recall: Planar Graphs

- The drawing on the left is not a plane graph. However, on the right we have a different drawing of the same graph, which is a plane graph.
- An abstract graph that can be drawn as a plane graph is called a planar graph.

Non-Planar Graphs

- Recall. We proved that \(K_5 \) and \(K_{3,3} \) are not planar.
 - Thus, every graph that contains \(K_5 \) or \(K_{3,3} \) as a subgraph is also not planar.
 - Are there graphs that do not contain \(K_5 \) and \(K_{3,3} \) as subgraphs, and are not planar?
 - Yes, and we can use \(K_5 \) and \(K_{3,3} \) to generate them.
More Non-Planar Graphs

- **Subdividing edges** of K_5 or $K_{3,3}$ cannot make them planar.
 - If we have a plane drawing after the subdivision, the same drawing works for the original graph.

Reminder: Topological Minors

- A graph H is a **topological minor** of a graph G if G contains a subdivision of H as a subgraph.
Kuratowski's Theorem

Theorem. A graph is planar if and only if it does not have K_5 and $K_{3,3}$ as topological minors.

- We know that if a graph contains K_5 or $K_{3,3}$ as a topological minor, then it is not planar.
- It remains to prove that every non-planar graph contains such a topological minor.

Kazimierz Kuratowski

Minimal Non-planar Graph

- A minimal non-planar graph is a non-planar graph G such that any proper subgraph of G is planar.
- What minimal non-planar graphs can you think of?
 - K_5 and $K_{3,3}$.
Kuratowski Subgraphs

- Given a graph G, a *Kuratowski subgraph* of G is a subgraph that is a subdivision of K_5 or of $K_{3,3}$.

Proof Strategy

- To prove *Kuratowski's theorem*, we need to prove that every non-planar graph contains a Kuratowski subgraph.
 - It suffices to prove this only for *minimal non-planar graphs*.
- **Strategy:**
 - Show that every minimal non-planar graph with no Kuratowski subgraph *must be 3-connected*.
 - Then show that every 3-connected graph with no Kuratowski subgraph *is planar*.
Choosing the Unbounded Face

Lemma. Let G be a planar graph, and let F be a set of edges that form the boundary of a face in an embedding of G. Then there exists a non-crossing drawing of G where F is the boundary of the unbounded face.

Proof

- We draw the graph on a sphere, and then project it from a point on the face f.
 - In the projection on the plane, f will be the unbounded face.
Bad Math Joke #1

- **Q:** What do you call a young eigensheep?
- **A:** A lamb, duh!

Connectedness of Minimal Non-planar Graphs

- **Claim.** Every minimal non-planar graph is 1-connected.
 - Assume for contradiction that there exists a minimal non-planar graph G that is not connected.
 - Let C be a connected component of G.
 - By the minimality of G, both C and $G - C$ are planar.
 - But then we can draw C and then draw $G - C$ inside one of its faces. **Contradiction!**
2-Connectedness

- **Claim.** Every minimal non-planar graph is **2-connected**.
 - Assume for contradiction that there exists a minimal non-planar graph $G = (V, E)$ that is not 2-connected.
 - There exists a vertex v whose removal disconnects G.
 - Let C be a component of $G - v$.
 - By the minimality of G, the induced subgraph on $C \cup \{v\}$ and $(V \setminus C) \cup \{v\}$ are both planar.
 - We can embed both graphs with v on the unbounded face, and merge both copies of v.

Illustration

![Illustration](image-url)
Preparing for 3-Connectedness

- **Claim.** Let $G \in (V, E)$ be a non-planar graph and let $x, y \in V$, such that $G - \{x, y\}$ is disconnected. Then there is a component C of $G - \{x, y\}$ such that the induced subgraph on $C \cup \{x, y\}$ with the edge (x, y) is non-planar.

Proof

- C_1, \ldots, C_k – the components of $G - \{x, y\}$.
- G_i – the induced subgraph on $C_i \cup \{x, y\}$, plus the edge (x, y).
- Assume for contradiction that G_1, \ldots, G_k are all planar.
 - H_1 – a plane drawing of G_1.
 - H_i (for $2 \leq i \leq k$) – drawing G_i (without crossings) in a face of H_{i-1} with (x, y) on its boundary, and merging the two copies of x, y.
 - Each H_i is planar, including $H_k = G$.

Contradiction!
Bad Math Joke #2

• **Q:** What do you get when you cross a mountain goat and a mountain climber?
• **A:** Nothing—you can’t cross two scalars.

3-Connectedness

• **Lemma.** Let $G = (V, E)$ be a graph with fewest edges among all non-planar graphs without a Kuratowski subgraph. Then G is 3-connected.

• **Proof.**
 ◦ G is a minimal non-planar graph.
 ◦ **By a previous lemma,** G is 2-connected.
 ◦ We need to prove that there are no vertices $x, y \in V$ such that $G - \{x, y\}$ is disconnected.
Proof

- Assume for contradiction that there exist \(x, y \in V \) such that \(G - \{x, y\} \) is disconnected.
 - \(C_1, \ldots, C_k \): the components of \(G - \{x, y\} \).
 - By the previous lemma, there exists \(C_i \) such that the induced subgraph on \(C_i \cup \{x, y\} \) plus the edge \((x, y)\) is non-planar. Denote it as \(H \).
 - By the minimality of \(G \), \(H \) contains a Kuratowski subgraph \(K \).
 - Since \(G \) does not contain \(K \), it must be that \((x, y)\in K\) and \((x, y)\notin E\).

Proof (cont.)

- Let \(C' \) be another component of \(G - \{x, y\} \).
- In \(G \) there is a path \(P \) between \(x \) and \(y \) that uses only vertices of \(C' \).
- Combining \(P \) with the other edges of \(K \) yields a Kuratowski subgraph of \(G \). **Contradiction!**
Recap

- We proved that a smallest non-planar graph **without a Kuratowski subgraph** is **3-connected**.
 - To complete the proof of **Kuratowski's Theorem**, we prove that every 3-connected graph without a Kuratowski subgraph is **planar**.

Bad Math Joke #3

- **Q:** What do you get if you cross an elephant and a banana?
- **A:** |elephant| · |banana| · sin θ.
Contraction Cannot Generate Kuratowski Subgraphs

- **Lemma.** Let \(G = (V, E) \) be a graph with no Kuratowski subgraph. Then contracting any edge \(e \in E \) does not result in a Kuratowski subgraph.

- **Proof.**
 - \(G_e \) – the graph that is obtained by contracting \(e = (x, y) \) in \(G \).
 - Assume for contradiction that \(G_e \) contains a Kuratowski subgraph \(H \).

Proof

- \(v_e \) – vertex obtained by contracting \(e = (x, y) \).
- If \(v_e \) is not in \(H \), then \(H \) is also a subgraph of \(G \). **Contradiction!**
- \(v_e \) cannot have degree zero or one in \(H \).
- If \(v_e \) has degree two in \(H \), we can find \(H \) in \(G \) by replacing \(v_e \) with \(x \) and/or \(y \). **Contradiction!**
Proof (cont.)

- Consider the case where \(\text{deg } x \geq \text{deg } v_e \).
 - Then \(H \) is also in \(G \) with \(x \) replacing \(v_e \) and \(y \) being a subdivision vertex. **Contradiction!**

Proof (cont.)

- **A single case remains:** \(H \) is a subdivision of \(K_5 \) and after expanding \(e \) back both \(x \) and \(y \) are of degree 3.
 - In this case \(G \) contains \(K_{3,3} \). **Contradiction!**
 - In the figure, we have \(y, a, b \) on one side and \(x, c, d \) on the other.
Contractions and 3-Connectivity

- **Lemma.** Let \(G = (V, E) \) be a \textit{3-connected graph} with \(|V| \geq 5 \). Then there exists an edge \(e \in E \) whose \textit{contraction results in a 3-connected graph}.

\[
\text{Proof}
\]
- Assume \textit{for contradiction} that there exists a 3-connected \(G = (V, E) \) with \(|V| \geq 5 \), such that contracting any \(e \in E \) yields a graph \(G_e \) that is not 3-connected.
 - For any \(e \in E \), let \(v_e \) denote the vertex of \(G_e \) to which \(e \) is contracted.
 - Since \(G_e \) is not 3-connected, there exists \(z_e \in V \) such that \(G_e - \{v_e, z_e\} \) is disconnected.
Proof (cont.)

- Every $e = (x, y) \in E$ has $z_e \in V$ such that:
 - $G_e - \{v_e, z_e\}$ is disconnected.
 - $G - \{x, y, z_e\}$ is disconnected

- We choose an edge $e = (x, y)$ so that the size of the largest component C of $G - \{x, y, z_e\}$ is maximized.
 - C' — another component of $G - \{x, y, z_e\}$.
 - There must be an edge f between z_e and a vertex $u \in C'$.

Proof (cont.)

- Let C' be another component. There is an edge f between z_e and a vertex $u \in C'$.
 - By definition, $G - \{z_e, u, z_f\}$ is disconnected.
 - The induced subgraph of $C \cup \{x, y\}$ is connected. Also, deleting z_f from this subgraph cannot disconnect it, since this would imply that $G - \{z_e, z_f\}$ is disconnected (but G is 3-connected!).
 - So $G - \{z_e, u, z_f\}$ is disconnected and contains a component larger than C.

 Contradiction!
The End

• A physicist and a mathematician are sitting in a faculty lounge. Suddenly, the coffee machine catches on fire. The physicist grabs a bucket and leaps toward the sink, fills the bucket with water, and puts out the fire.

• Another day, and the same two sit in the same lounge. Again the coffee machine catches on fire. This time, the mathematician stands up, gets a bucket, and hands the bucket to the physicist, thus reducing the problem to a previously solved one.