A graph $G = (V, E)$ is said to be k-connected if $|V| > k$ and we cannot disconnect G by removing $k - 1$ vertices from V.

Is the graph in the figure

- 1-connected? Yes.
- 2-connected? Yes.
- 3-connected? No!
1- and 2-Connected Graphs

• We characterized all of the graphs that are 1-connected.
 ◦ These are exactly the connected graphs.

• Can we characterize all of the graphs that are 2-connected?
 ◦ What is the simplest type of 2-connected graphs? Cycles.

G-paths

• Given a graph G, a G-path is a path that is not a cycle and meets G only at its endpoints.
2-connected Graphs

- **Theorem.** A graph is 2-connected if and only if it can be constructed by repeatedly adding G-paths to a cycle.

- **Proof (easy direction).**
 - If a graph was built by repeatedly adding G-paths to a cycle, it cannot be disconnected by removing one vertex.

The Other Direction

- Assume for contradiction that a 2-connected graph $G = (V, E)$ cannot be obtained by repeatedly adding C-paths to a cycle C.
- **There is a cycle C in G.**
 - Otherwise, G is a tree, and thus not 2-connected.
- **We repeatedly add C-paths** to C using edges of G, until no such paths remain.
 - By definition, we obtain a subgraph $G' \subset G$.
Completing the Proof

- G – 2-connected graph that cannot be obtained by adding C-paths to a cycle C.
- $G' \subseteq G$ – a maximal subgraph that can be obtained by adding C-paths to cycle C.
 - Since G is connected, there is a vertex $v \in V - G'$ that is connected by an edge to a vertex of G'.
 - Since G is 2-connected, there must be another path between v and G'.
 - Contradicting the maximality of G'.

Blocks

- **Recall.** Any graph can be decomposed into connected components.

 ![Connected Components](image)

- A block* is a maximal subgraph that is 2-connected.
 - Can we decompose every graph into blocks?

* The correct definition is 3 slides ahead.
Block Properties

- Can two blocks share a vertex? **Yes**

- Can two blocks share two vertices?
 - Let \(B_1, B_2 \) be two blocks with at least two common vertices.
 - If we remove a vertex of \(B_1 \) from \(B_1 \cup B_2 \), by definition \(B_1 \) remains connected, and remains connected to \(B_2 \).
 - We cannot disconnect \(B_1 \cup B_2 \) by removing one vertex, so it is **one big block**.

The Decomposition

- **We decompose a graph into blocks.** Does every edge belong to block? **No**
 - We refer to edges between blocks as **bridges**.
 - We **extend the definition of a block** so that a bridge is also considered as a block.
The Accurate Definition of a Block

- A **block** is a maximal subgraph that cannot be disconnected by removing one vertex.

- Deciding whether an isolated vertex is a block is just a matter of definition.

st-disconnecting Set

- Consider a graph $G = (V, E)$ and $s, t \in V$.
 - An **st-disconnecting set** is a subset $S \subseteq V \setminus \{s, t\}$ whose removal disconnects G, such that s and t are in different components.
Menger’s Theorem

- **Theorem (Menger 1927).** Consider a graph $G = (V, E)$ and vertices $s, t \in V$ such that $(s, t) \notin E$. Then the size of the smallest st-disconnecting set equals to the maximum number of vertex-disjoint paths between s and t.

Proof

- k_{path} – maximum number of vertex disjoint paths between s and t.
- k_{disc} – minimum size of an st-disconnecting set.

We have $k_{\text{disc}} \geq k_{\text{path}}$ since every st-disconnecting set must contain a vertex from every path.

We prove $k_{\text{disc}} \leq k_{\text{path}}$ by induction on $|V|$.
 - **Induction basis.** When $|V| = 2$, we have $k_{\text{disc}} = k_{\text{path}} = 0$
Induction Step

- \(N(s) \) – the set of neighbors of \(s \) in \(G \).
 - Notice that \(N(s) \) disconnects \(s \) from \(t \), and so does \(N(t) \).
- We partition the analysis of the induction step into two cases:
 - There exists a minimum-sized \(st \)-disconnecting set \(D \) such that \(D \neq N(s) \) and \(D \neq N(t) \).
 - Every minimum-sized \(st \)-disconnecting set is either \(N(s) \) or \(N(t) \) (one of these two sets might not be minimal).

The First Case

- Assume that there exists a minimum-sized \(st \)-disconnecting set \(D \) such that \(D \neq N(s) \) and \(D \neq N(t) \).
 - Removing \(D \) disconnects \(G \) into several components.
 - \(C_s \) - the component containing \(s \).
 - \(C_t \) - the component containing \(t \).
 - How can we use the induction hypothesis?
The First Case (cont.)

- G_s - the induced graph on $C_s \cup D$.
 - We add a vertex t' to G_s and edges between t' and every vertex of D.
 - Since D is a min st-disconnecting set of G, it is also a min st'-disconnecting set of G_s.
 - By the **induction hypothesis**, there are $|D| = k_{\text{disc}}$ vertex-disjoint paths from s to t'.

Completing the First Case

- We have a set of **vertex disjoint paths** from s to each of the k_{disc} vertices of D.
- Similarly, we have a set of **vertex disjoint paths** from each of the k_{disc} vertices of D to t.
 - Combining the two yields a set of k_{disc} vertex disjoint paths from s to t.
 - That is, $k_{\text{disc}} \leq k_{\text{path}}$, completing the proof in this case.
The Second Case

- Assume that every min st-disconnecting set is either $N(s)$ or $N(t)$.
 - That is, $v \in V \setminus (\{s, t\} \cup N(s) \cup N(t))$ is not in any minimum-sized st-disconnecting set.
 - By removing such a vertex v, we obtain a graph G', also with a min st-disconnecting set of size k_{disc}.
 - By the hypothesis, G' contains k_{disc} vertex-disjoint paths between s and t. These also exist in G.

A Missing Case

- What is still missing in case 2?
 - What if there is no vertex $v \in V \setminus (\{s, t\} \cup N(s) \cup N(t))$?
 - Let $C = N(s) \cap N(t)$, $N_s = N(s) \setminus C$, and $N_t = N(t) \setminus C$.
 - Any disconnecting set must contain C, which also corresponds to $|C|$ paths of the form $s \rightarrow v \rightarrow t$, where $v \in C$.
 - Each of the other $k_{\text{disc}} - |C|$ vertices of the minimum disconnecting set is either in N_s or N_t.
Completing the Missing Case

- Let $C = N(s) \cap N(t)$, $N_s = N(s) \setminus C$, and $N_t = N(t) \setminus C$. Consider the bipartite subgraph on $N_s \cup N_t$ (removing edges between vertices of the same side).
- The minimum disconnecting set contains $k_{\text{disc}} - |C|$ vertices in this subgraph. These vertices form a minimum vertex cover.

Recall: König’s Theorem

- **Theorem.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. Then the size of a maximum matching of G is equal to the size of a minimum vertex cover of G.
Using Vertex Covers

- Since G' has a minimum vertex cover of size $k_{\text{disc}} - |C|$, it has a matching A of the same size.
 - Each matching edge corresponds to a path $s \rightarrow v \rightarrow u \rightarrow t$ ($v \in N_s$ and $u \in N_t$).
 - These paths are vertex disjoint, so we again have at least k_{disc} vertex-disjoint paths.

Conclusion

- **Menger’s theorem** yields an alternative definition of k-connectedness.
 - **Original definition.** A graph $G = (V, E)$ is said to be k-connected if $|V| > k$ and we cannot obtain a non-connected graph by removing $k - 1$ vertices from V.
 - **Equivalent definition.** A graph $G = (V, E)$ is said to be k-connected if $|V| > k$ and between any two vertices $s, t \in V$ with $(s, t) \notin E$ there are at least k vertex-disjoint paths.
Verifying k-Connectedness

- **Problem.** Given a graph $G = (V, E)$ and an integer $k > 0$, describe an algorithm for checking whether G is k-connected.

Solution

- **For every pair of vertices** $s, t \in V$ with $(s, t) \notin E$, we check whether there are k vertex-disjoint paths between s and t.
 - G is k-connected if and only if all of the $\binom{|V|}{2}$ checks pass.
- How can we check whether there are k vertex-disjoint paths between s and t?
 - We did this in 6a using flow networks.
Building a Flow Network

- A quick reminder from 6a:
 - The source is s. The sink is t.
 - The capacities are all 1.
 - We split every edge into a pair of anti parallel edges.
 - We split every $v \in V$ into v_{in} and v_{out}.

More Efficient

- We showed how to check whether a graph is k-connected by finding maximum flow in $\binom{|V|}{2}$ flow networks.
- By more involved argument, it suffices to find $|V| - 1$ maximum flows.
The End

ANSWER: natural selection

THAG MAKE FIRE.

THAG INVENT WHEEL.

NOW THAG WILL...

SABER TOOTH!

WAIT! THAG CALCULATE.

SHORTEST DISTANCE TO LOCATION MAXIMIZING PROBABILITY OF SURVIVAL.

L = \int dy \sqrt{1 + y'^2} dx

\[\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0 \]

QUESTION: Why are there so many more jocks than nerds in the world today?