Neighbor Sets

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- For any vertex $a \in V_1$, we define the neighbor set of a as
 \[N(a) = \{ u \in V_2 \mid (a, u) \in E \}. \]

 \[N(a) = \{ u, v \} \]
 \[N(b) = \{ v, w \} \]
More Neighbor Sets

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
- For any subset $A \subset V_1$, we define

$$N(A) = \{ y \in V_2 \mid (x, y) \in E \text{ for some } x \in A \}.$$

- $N(\{b, c, d\}) = \{u, v, w\}$
- $N(\{a, e\}) = \{u, w, x\}$

Hall's Marriage Theorem

- **Theorem.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph.
 - There exists a matching of size $|V_1|$ in G if and only if every $A \subset V_1$ satisfies $|A| \leq |N(A)|$.

- We say that G satisfies Hall's condition if for every $A \subset V_1$, we have $|A| \leq |N(A)|$.

Philip Hall
Neighbor Sets and Matchings

- Explain why there is no matching of size four in this graph:

```
  a -- u
  b -- v
  c   w
  d -- x
```

- $N\{b, c, d\} = \{v, w\}$, so we cannot find a match for all three vertices b, c, d.

Proving Hall’s Theorem

- **Easy direction.** If there exists a subset $A \subseteq V_1$ such that $|A| > |N(A)|$, then there is no matching of size $|V_1|$ in G.

- **It remains to prove.** If every subset $A \subseteq V_1$ satisfies $|A| \leq |N(A)|$, then there is a matching of size $|V_1|$ in G.
 - We now present a proof by induction.

(different than the proof from 6a)
Proof by Induction

- **We prove by induction on** $|V_1|$ **that**
 - If every subset $A \subseteq V_1$ satisfies $|A| \leq |N(A)|$, then there is a matching of size $|V_1|$ in G.

- **Induction basis.** When $|V_1| = 1$ the claim obviously holds.

- **Induction step.** We consider two cases:
 - Every nonempty $A \varsubsetneq V_1$ satisfies $|A| < |N(A)|$.
 - There exists $A \varsubsetneq V_1$ such that $|A| = |N(A)|$.

The First Case

- **Assume that** every nonempty $A \varsubsetneq V_1$ satisfies $|A| < |N(A)|$.
 - Consider an edge $(a, b) \in E$. **Remove** a and b **from** G **to obtain a graph** $G' = (V_1' \cup V_2', E')$.
 - Every $A \subseteq V_1'$ satisfies $|A| \leq |N(A)|$.
 - By **the induction hypothesis**, G' contains a matching of size $|V_1'| = |V_1| - 1$.
 - **Adding** the edge (a, b) to the matching yields a matching of size $|V_1|$ in G.
The Second Case

- Assume that there exists a non-empty $A \subsetneq V_1$ such that $|A| = |N(A)|$.
 - By the hypothesis, the induced subgraph on $A \cup N(A)$ contains a matching of size $|A|$.

Our Plan

- The red vertices in V_1 form a subset A such that $|A| = |N(A)|$.
 - We have a matching between the red vertices. It remains to find a matching between the blue vertices.
The Second Case (cont.)

- Assume that there exists a non-empty $A \subset V_1$ such that $|A| = |N(A)|$.
 - By the hypothesis, the induced subgraph on $A \cup N(A)$ contains a matching of size $|A|$.
 - Consider the induced subgraph G' on $V_1 \setminus A$ and $V_2 \setminus N(A)$.
 - For every subset $A' \subset V_1 \setminus A$, since in G $|A \cup A'| \leq |N(A) \cup N(A')|$, then in G' $|A'| \leq |N(A')|$. By the hypothesis, G' contains a matching of size $|V_1 \setminus A|$.
- Thus, G contains a matching of size $|V_1|$.

Reminder: National Resident Matching Program

- Every medical student who is about to graduate ranks hospitals in which she wants to do her residency.
- Every hospital ranks students that it is interested in.
- Every year, over 20,000 applicants apply to about 1,800 programs.
- How can we handle this?
The Corresponding Graph

- **Bipartite graph** – a vertex in V_1 for each student. A vertex in V_2 for each hospital.
- An **edge** between a student and a hospital that are **interested in each other**.
 - A matching corresponds to assigning students to hospitals.

The Problem

- Problem. **We did not consider the rankings of the students and hospitals.**
 - We might have chosen the red matching.
 - However, perhaps student A **prefers** hospital β, student B **prefers** hospital α, and similarly for the hospitals.
Unstable Matchings

- We have a bipartite graph $G = (V_1 \cup V_2, E)$ such that each vertex has a ranking of the vertices that it would like to be connected to.
- We say that a matching M of G is unstable if there exists an edge $(a, b) \in E$ that is not in M and that both a and b prefer to be matched to each other than to their current match (or are unmatched).

Etymology

- Why is this called “unstable”?
- The problem was originally formulated for matching men and women to be married.
 - Man A and woman A are married.
 - Man B and woman B are married.
 - If man A prefers woman B and woman B prefers man A, these are unstable marriages!
Example: An Unstable Matching

- **Rankings:**
 - A: 1. α 2. γ 3. β
 - B: 1. α 2. γ 3. β
 - C: 1. β 2. α 3. γ
 - α: 1. A 2. B 3. C
 - β: 1. C 2. B 3. A

- The red edges form an **unstable** matching since both A and α prefer the edge (A, α).

Stable Marriage Theorem

- **Theorem.** For any bipartite graph $G = (V_1 \cup V_2, E)$ with sets of preferences for each vertex, there exists a **stable matching**.

- Proven in 1962 by **Gale and Shapley**.
 - In 2012, the **Nobel Prize in Economics** was awarded to **Shapley** “for the theory of stable allocations and the practice of market design.”
A Better Matching

- A matching M in G is better than a matching M', if every vertex of V_2 prefers its matched vertex in M to its matched vertex in M' (or has the same matched vertex in both).
 - No matched vertex in V_2 becomes unmatched.
 - The matching on the left is better iff α prefers A to B.

Proof Idea

- We prove the stable marriage theorem by showing that for every unstable matching M_i, there exists a better matching M_{i+1}.
- We start with an empty matching M_0 and repeatedly find a better matching.
 - Starting from an empty matching, a better matching can be found at most $|V_1||V_2|$ times, so we eventually obtain a stable matching.
Acceptable Vertices

- Given a matching M_i, we say that $a \in V_1$ is acceptable to $b \in V_2$ if
 - $(a, b) \in E \setminus M_i$, and
 - b prefers a to its match in M_i.

- In the figure, B is acceptable to β iff β prefers B to C.

- A student S is acceptable to a hospital if it likes S better than its current student.

Happy Vertices

- We say that a vertex $a \in V_1$ is happy with a matching M_i if either
 - a is unmatched in M_i, or
 - $(a, b) \in M_i$, and a prefers b to all of the vertices of V_2 that finds a acceptable.

- Intuitively, a student is happy if she is assigned to her favorite hospital out of the ones that like her better than their current choice (or is unmatched).
Building Happy Matchings

- We only consider matchings where *every vertex of V_1 is happy.*
 - This is the case for the empty matching M_0.

- Given a matching M_i:
 - Consider an unmatched vertex $a \in V_1$ and let b denote a’s favorite among the vertices of V_2 for which a is acceptable.
 - We set $M_{i+1} = M_i \cup \{(a, b)\}$ (possibly also removing an edge $(a', b) \in M_i$).
 - Notice that M_{i+1} is better than M_i and that *every vertex of V_1 is happy.*

Final Details

- Given a matching M_i:
 - What if every unmatched vertex $a \in V_1$ has no vertex in V_2 for which a is acceptable.
 - Then M_i is a stable matching!
 - What if there are no unmatched vertices in M_i?
 - Since every vertex of V_1 is happy, this again means that M_i is stable.
Finding a Stable Matching

- The proof of the stable marriage theorem presents us with an **algorithm for finding a stable matching**:
 - Build a sequence of matchings M_i such that each is better than the previous one, until we obtain a stable matching.
 - At each step the algorithm picks an unmatched element of V_1 and finds the best match for it (not paying much attention to the preferences of the vertices of V_2).

The End

- **Why not use the stable marriage algorithm to set houses for new students?**