Ma/CS 6b
Class 2: Matchings

Send anonymous suggestions and complaints from here.
Email: adamcandobetter@gmail.com
Password: anonymous2

There aren’t enough crocodiles in the presentations

Is it OK to assume that P=NP??

Only today! 75% off for Morphine and Xanax.

Could you open every class by playing Flight of the Valkyries?
National Resident Matching Program

- Every **medical student** who is about to graduate ranks **hospitals** in which she wants to do her residency.
- Every **hospital** ranks **students** that it is interested in.
- Every year, over 20,000 applicants apply to about 1,800 programs.
- How can we handle this?

Reminder: Bipartite Graphs

- A graph $G = (V, E)$ is **bipartite** if we can partition V into disjoint subsets $V_1, V_2 \subseteq V$ such that every edge of E is between a vertex of V_1 and V_2.
- Equivalently, the vertices of V can be colored red and blue such that no edge is **monochromatic**.
Reminder: Matchings

- A matching in a graph is a set of vertex-disjoint edges.
- The size of a matching is the number of edges in it.
- A maximum matching of G is a matching of maximum size.

Back to the Medical Students

- How can we approach our medical students problem?
 - Bipartite graph – a vertex in V_1 for each student. A vertex in V_2 for each hospital.
 - An edge exists between a student and a hospital if they are interested in each other.
Solving the Problem?

- What should we do with the student-hospital graph?
 - We can find the maximum matching, but there are two problems with this.

First Problem

- **Problem.** Some hospitals might wish to take more than one resident.
- **Solution.** (as we saw in 6a)
 - If a hospital wants to take \(k \) residents, in the graph we have \(k \) vertices for it.
Second Problem

- Problem. We did not consider the rankings of the students and hospitals.
 - We might have chosen the red matching.
 - However, perhaps student A prefers hospital β, student B prefers hospital α, and similarly for the hospitals.

Alternating Paths

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching of G.
- A path is alternating for M if it starts with an unmatched vertex of V_1 and every other edge of it is in M.
Augmenting Paths

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a matching of G.
- A path is augmenting for M if it is an alternating path of M, and ends in an unmatched vertex.

Using Augmenting Paths

- Consider a matching M and an augmenting path P of M.
- By switching in P the edges that are in M with the edges that are not, we obtain a larger matching.
Augmenting Paths and Matchings

• **Claim.** Let $G = (V_1 \cup V_2, E)$ be a bipartite graph and let M be a matching in G. Then M is **not a maximum matching** iff there exists an **augmenting path** for it.

• **Proof.**
 ◦ If there is an **augmenting path**, we can use it to **find a larger matching**, so M is not a maximum matching.
 ◦ It remains to prove that when M is not a maximum matching, there is an augmenting path for it.

Completing the Proof

• M^* – a **maximum matching** of G.
• F – the set of **edges** that are either in M or in M^*, but not in both. Set $G' = (V, F)$.
• In G', every vertex is of degree **at most two**.
• Thus, G' is composed of **paths, cycles, and isolated vertices**. Since $|M| < |M^*|$, there must be at least one **augmenting path** for M.
Traffic Cameras

• **Problem.** The city of Pasadena wants to have **traffic cameras that cover all of the roads of the city.**
 ◦ A camera covers 360° and sees far enough to cover a road at least until the next intersection.
 ◦ **How can we efficiently find the minimum number of cameras that are necessary?**

Considering the Problem as a Graph

• We build a graph:
 ◦ A **vertex** for every **intersection**.
 ◦ An **edge** between every two **adjacent intersections**.

• **What do we need to find in the graph?**
 ◦ A minimum set of vertices S such that every edge is adjacent to at least one vertex of S.
Vertex Covers

- Let $G = (V, E)$ be a graph. A **vertex cover** of G is a set of vertices $V' \subset V$ such that every edge of E is adjacent to at least one vertex of V'.

More About Vertex Covers

- **No polynomial-time algorithm is known** for finding the **minimum vertex cover**.
- A main open problem in Theoretical Computer Science.
 - Significantly easier in bipartite graphs.
König’s Theorem

• **Theorem.** Let \(G = (V_1 \cup V_2, E) \) be a bipartite graph. Then the size of a *maximum matching* of \(G \) is equal to the size of a *minimum vertex cover* of \(G \).

• **Proof.**
 ∘ \(M \) – a max matching.
 ∘ \(C \) – a min vertex cover.
 ∘ Since the edges of \(M \) are vertex-disjoint and \(C \) must contain a vertex of each, we have \(|C| \geq |M| \).

Proof (cont.)

• \(C \) – a min vertex cover.
• \(M \) – a max matching.
• We saw that \(|C| \geq |M| \).
• To complete the proof, it suffices to find a vertex cover of size \(|M| \).
• We build a *subset* \(V' \subseteq V \) by taking one vertex out of each edge \(e = (a, b) \) of \(M \).
 ∘ Take \(b \) if an *alternating path* of \(M \) ends in \(b \).
 ∘ Otherwise, take \(a \).
Proof (cont.)

- V' consists of one vertex of each edge $(a, b) \in M$.
 - Take b if an alternating path of M ends in b.
 - Otherwise, take a.
- Assume for contradiction that an edge $(a, b) \in E$ is not covered by V'.
 - Either a or b must be matched in M, since otherwise M is not a max matching.

The Case where b is Matched

- Assume that b is matched in M, but not a.
 - Then $(a', b) \in M$ for some $a' \in V_1$.
 - Since $b \notin V'$, we have $a' \in V'$ and no alternating path ends at b.
 - But (a, b) is such an alternating path! Contradiction!
The Case where a is Matched

- We proved that a is matched in M.
 - $(a, b') \in M$ for some $b' \in V_2$.
 - Since $a \notin V'$, we have $b' \in V'$ and there is an alternating path P ending at b'.
 - If $(a, b') \notin P$, then the path $P + (a, b') + (a, b)$ is an alternating path ending in b.
 - If b is matched, then $b \in V'$ contradicting (a, b) not being covered by V'.
 - If b is unmatched, this an augmenting path for M, contradicting the maximality of M.

The Last Case

- It cannot be that $(a, b') \in P$. No alternating path can end in (a, b').
 - In the path, we move from V_1 to V_2 only with unmatched edges.
Concluding the Proof

- M – a maximum matching.
- We defined a subset $V' \subset V$ of size $|M|$ and proved that it is a vertex cover.
- We also proved that any vertex cover is of size at least $|M|$, implying that V' is a minimum vertex cover.
 - That is, the minimum vertex cover has the same size as the maximum matching.

Vertex Covers in Bipartite Graphs

- **Problem.** Describe an efficient algorithm for finding a min vertex cover in a bipartite graph $G = (V_1 \cup V_2, E)$.
- **Solution.**
 - From 6a, we know an algorithm for finding a maximum matching M in a bipartite graph.
 - We pick one vertex out of each edge $(a, b) \in M$. Take b if an alternating path ends in b. Otherwise, take a.
 - But how do we know whether such a path exists?
Finding an Alternating Path

- Let $G = (V_1 \cup V_2, E)$ be a bipartite graph, and let M be a max matching.
- We wish to find whether there is an alternating path for M ending at $b \in V_2$.
 - We run a variant of BFS from b.
 - We already did this in detail in 6a.

The End