1. Let $G = (V, E)$ denote a graph that does not contain a perfect matching, even though $|V|$ is even. Thus, there exists a set $S \subset V$ violates Tutte’s condition. Let $n = |V|$ and $k = |S|$. Find the maximum number of edges that G can have, as a function of n and k. Make sure to find the exact value for every k and to briefly explain why it is indeed the maximum. You may assume that n is much larger than k.

2. Consider a connected graph $G = (V, E)$ such that $|V|$ is even and G does not contain $K_{1,3}$ as an induced subgraph.\footnote{$K_{s,t}$ is a “complete” bipartite graph with s vertices on one side, t vertices on the other side, and all of the st edges between the two sides.} Prove that G contains a perfect matching by showing that it satisfies Tutte’s condition (do not find a perfect matching by using a different method).

3. Find the smallest 3-regular graph that has a connectivity of 1. Explain why a smaller graph with these properties cannot exist.

4. Let $G = (V, E)$ be a connected graph with the following special property: For every $e \in E$, there exist two cycles C_1, C_2 in G that have exactly one edge in common — the edge e. The two cycles may have more vertices in common, and there may be additional cycles that contain e.

 Prove or disprove: The graph G must be 3-edge-connected.