1. (a) Suppose \(A = B \oplus C \). For any \(x \in U \), \(x = \sum_{i=1}^{n} f_i x_i \) where \(f_{m+1} = \cdots = f_n = 0 \), so \(Ax \) is also in \(U \). Hence \(\alpha(U) \subset U \). Similarly one sees that \(\alpha(W) \subset W \). The characterizations of \(B, C \) are clear from the form of \(A \).

For the converse, notice that since \(\alpha(U) \subset U \), \(\alpha(W) \subset W \) and \(U \cap W = \{0\} \), the entries of \(A = (a_{ij}) \) must satisfy \(a_{ij} = 0 \) whenever \(i \leq m \) and \(j > m \), or \(i > m \) and \(j \leq m \). Thus \(A = B \oplus C \).

(2) By the determinant formula for block matrices, we know \(m_A = \det(xI - A) = \det(xI - B)\det(xI - C) = m_Bm_C \). Because of the form of \(A \), we know that \(\text{Ann}(A) = \text{Ann}(B) \cap \text{Ann}(C) \), so \((m_A) = (m_B) \cap (m_C) \), but \(F[x] \) is a PID, so \(m_A = \text{lcm}(m_B, m_C) \).

(3) \(A \) is diagonalizable if and only iff \(m_A \) factors into distinct linear factors over \(F \), which by part (2) is equivalent to \(m_B, m_C \) each factor into distinct linear factors over \(F \), which in turn is equivalent to \(B, C \) being diagonalizable.

2. Looking at factorizations of the given cyclic modules, one sees that over \(\mathbb{Q}, \mathbb{R} \) and \(\mathbb{C} \) the invariant factors must be \(x^4 - 16, (x - 2)^2(x + 2)(x^2 + 4) \). Over \(\mathbb{Q} \) and \(\mathbb{R} \), \(x^2 + 4 \) is irreducible, so the elementary divisors are \((x - 2), (x - 2)^2, (x + 2), (x + 2), (x^2 + 4) \) and \((x^2 + 4) \). Over \(\mathbb{C} \), we have \((x - 2), (x - 2)^2, (x + 2), (x + 2), (x + 2i), (x + 2i), (x - 2i), (x - 2i) \) and \((x - 2i) \).

3. 3-by-3 matrices have characteristic polynomials of degree 3, so the only possible characteristic polynomials are \((x + 1)^2(x - 1)\) and \((x + 1)(x - 1)^2\), which correspond to similarity classes with representatives \(\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \), respectively.

4. The Jordan canonical form only exists when \(F \) contains all the eigenvalues of the matrix in question, so we assume \(F \) is an extension of \(\mathbb{Q} \) which contains \(i \). There are eight possible cases:

1. invariant factor: \((x + 1)^2(x^2 + 3)^2\);
2. invariant factors: \((x + 1)(x^2 + 3), (x + 1)(x^2 + 3)\);

\[
\begin{align*}
\text{RCF} &= \begin{pmatrix} 1 & -3 \\ 1 & -1 \end{pmatrix} ; \\
\text{JCF} &= \begin{pmatrix} -1 & 1 \sqrt{3} \\ -1 & -1 \sqrt{3} \end{pmatrix}
\end{align*}
\]

3. invariant factors: \((x + 1)^2(x^2 + 3), (x^2 + 3)\);

\[
\begin{align*}
\text{RCF} &= \begin{pmatrix} 1 & -3 \\ 1 & -1 \end{pmatrix} ; \\
\text{JCF} &= \begin{pmatrix} -1 & 1 \sqrt{3} \\ -1 & -1 \sqrt{3} \end{pmatrix}
\end{align*}
\]

4. invariant factors: \((x + 1)(x^2 + 3)^2, x + 1\);

\[
\begin{align*}
\text{RCF} &= \begin{pmatrix} 1 & -9 \\ 1 & -6 \end{pmatrix} ; \\
\text{JCF} &= \begin{pmatrix} -1 & 1 \sqrt{3} \\ -1 & -1 \sqrt{3} \end{pmatrix}
\end{align*}
\]

5. invariant factors: \((x + 1)(x + i \sqrt{3}), (x + 1)(x + i \sqrt{3})(x - i \sqrt{3})^2\);

\[
\begin{align*}
\text{RCF} &= \begin{pmatrix} 1 & 3i \sqrt{3} \\ 1 & i \sqrt{3} - 1 \end{pmatrix} ; \\
\text{JCF} &= \begin{pmatrix} -1 & 1 \sqrt{3} \\ -1 & -1 \sqrt{3} \end{pmatrix}
\end{align*}
\]

6. invariant factors: \((x + 1)(x - i \sqrt{3})(x + 1)(x + i \sqrt{3})^2(x - i \sqrt{3})\);

\[
\begin{align*}
\text{RCF} &= \begin{pmatrix} i \sqrt{3} & 3i \sqrt{3} \\ i \sqrt{3} - 1 & i \sqrt{3} - 1 \end{pmatrix} ; \\
\text{JCF} &= \begin{pmatrix} -1 & 1 \sqrt{3} \\ -1 & -1 \sqrt{3} \end{pmatrix}
\end{align*}
\]

7. invariant factors: \(x - i \sqrt{3}, (x + 1)^2(x - i \sqrt{3})(x + i \sqrt{3})^2\);
8. invariant factors: \(x + i\sqrt{3}, (x + 1)^2(x + i\sqrt{3})(x - i\sqrt{3})^2; \)

\[
\begin{pmatrix}
-i\sqrt{3} & 3i\sqrt{3} \\
1 & 6i\sqrt{3} - 3 \\
1 & 4i\sqrt{3} - 6 \\
1 & 2i\sqrt{3} - 4 \\
1 & i\sqrt{3} - 2
\end{pmatrix};

\begin{pmatrix}
-1 & 1 \\
-1 & i\sqrt{3} \\
i\sqrt{3} & 1 \\
i\sqrt{3} & -i\sqrt{3}
\end{pmatrix}
\]

5. By the rational root test one sees that \(f(T) = T^3 + 5T + 5 \) is irreducible in \(\mathbb{Q}[x] \), so \(f(T) \) is the minimal polynomial of \(T \), so \(\text{char}(T) = f(T)^n \). But \(\dim(V) = \deg(\text{char}(T)) \), so \(3|\dim(V) \). When \(\dim(V) = 3 \), \(\text{char}(T) = f(T) \), so there is only one similarity class, of which a representative is

\[
\begin{pmatrix}
0 & 0 & -5 \\
1 & 0 & -5 \\
0 & 1 & 0
\end{pmatrix}.
\]