Set 1 - Ma 5b - Solutions

Luciena Xiao

January 16, 2017

7.1.7. Let R be a ring and let $Z(R)$ denote its center. First note that $1 \in Z(R)$ because $1 \cdot r = r = r \cdot 1$ for any $r \in R$. Now, to show $Z(R)$ is a subring, it suffices to show closure under subtraction and multiplication: for any $a, b \in Z(R)$ and $r \in R$, we have $(a - b)r = ar - br = ra - rb = r(a - b)$, and $abr = arb = rab$. Thus $Z(R)$ is indeed a subring that contains the identity.

Suppose R is a division ring. For any $a \in Z(R), a \in R$ and a^{-1} exists because R is a division ring. For any $r \in R, a^{-1}r = (r^{-1}a)^{-1} = (ar^{-1})^{-1} = a^{-1}r$, which implies $a^{-1} \in Z(R)$. This proves that $Z(R)$ is a division ring. Clearly, $Z(R)$ is commutative, so $Z(R)$ is a field.

7.1.13. (a) Clearly, $a^k b^k = (ab)^k$ and $n = a^k b^k | a^m b^m$, so $(ab)^k \equiv 0 \mod n$, i.e. ab is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

(b) Suppose $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent, then $n|a^m$ for some positive integer m. Thus if p is any prime divisor of n, then $p|a^m$, which implies $p|a$.

Conversely, suppose any prime divisor p of n also divides a. Write $n = \prod_{i=1}^{k} p_i^{m_i}$ where p_i are primes. Let $m = \max\{m_1, \cdots, m_k\}$, then $n|a^m$, so \overline{a} is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

By the above statement, all nilpotent elements of $\mathbb{Z}/72\mathbb{Z}$ must be multiples of 6 since $72 = 2^33^2$.

Therefore they are: $0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66$.

(c) Suppose $f \in R$ is nilpotent. Then there exists some positive integer m such that for any $x \in X, (f(x))^m = 0$. Since F is a field and $f(x) \in F$, $f(x)$ cannot be a zero divisor, so $f(x) = 0$. But this holds for any $x \in X$, so f is the zero function. Therefore R has no non-zero nilpotent element.

7.1.14. (a) Since x is nilpotent, there exists some minimal positive integer m with $x^m = 0$. If $m = 1, x = 0$; otherwise $x^{m-1} = 0$ where $x^{m-1} \neq 0$, which implies x is a zero divisor.

(b) gain, since x is nilpotent, there exists m such that $x^m = 0$. Since R is commutative, for any $r \in R$ we have $(rx)^m = r^m x^m = r^m 0 = 0$, so rx is nilpotent.

(c) Let m be as above. $1 = 1 + x^m = (1 + x)(1 - x + \cdots + (-x)^{m-1})$, so $1 + x$ is a unit.

(d) For any unit $a \in R, a + x = a(1 + a^{-1}x)$. By parts (b) and (c), $1 + a^{-1}x$ is a unit. A product of units is a unit, so $a + X$ is a unit.
7.1.23. We first prove \(\mathcal{O}_f \) is a subring containing the identity. \(1 = 1 + 0f\omega \), so \(1 \in \mathcal{O}_f \). For any \(x = a + b\omega, y = c + d\omega \in \mathcal{O}_f \), we have \(x - y = (a-c) + (b-d)f\omega \in \mathcal{O}_f \). Also, \(xy = (ac + bdf^2\omega^2) + (ac + bd)f\omega \). If \(D \not\equiv 1 \) mod 4, then \(\omega^2 = D \) and \(xy \) is clearly in \(\mathcal{O}_f \); if \(D \equiv 1 \) mod 4, then \(\omega^2 = (1 + \sqrt{D})^2/4 = (D-1)/4 + \omega \) and \(4|D-1 \), so we can write \(xy = (ac + bdf^2(D-1)/4) + (ac + bd + bdf)f\omega \), which is in \(\mathcal{O}_f \). Thus \(\mathcal{O}_f \) is a subring.

One can define a map \(\phi : \mathcal{O} \to \mathcal{O}_f \) by \(a + b\omega \mapsto a + b'f\omega \) where \(b' \) is the remainder of \(b \) modulo \(f \). It is easy to check that this map is a \(f \)-to-1 group homomorphism, so \(|\mathcal{O} : \mathcal{O}_f| = |\ker(\phi)| = f \).

Now conversely suppose \(R \subset \mathcal{O} \) is a subring with the stated properties. Then there exists a smallest integer \(f' \) such that \(f'\omega \in R \) since otherwise \(R \) wouldn’t have finite index. Now if there exists \(n\omega \in R \) with \(f' \nmid n \), then \(n'\omega \in R \) where \(n' \) is the remainder of \(n \) modulo \(f' \), contradicting the minimality of \(f' \). Therefore \(R \) must be of the form \(\mathbb{Z}[f'\omega] \). By the previous result we conclude \(f' = f \), i.e. \(R = \mathcal{O}_f \).

7.3.17. (a) Suppose \(\phi(1) \neq 1 \). Then \(\phi(1)^2 = \phi(1^2) = \phi(1) \), so \(\phi(1)(\phi(1) - 1) = 0 \), but \(\phi(1) - 1 \neq 0 \), so we conclude \(\phi(1) \) is a zero divisor. If \(S \) is an integral domain, then \(S \) contains no zero divisor, so \(\phi(1) \) must be the identity.

(b) If \(u \) is a unit, then \(1 = \phi(1) = \phi(u\bar{u}^{-1}) = \phi(u)\phi(u^{-1}) \), so \(\phi(u) \) is a unit and \(\phi(u^{-1}) = \phi(u)^{-1} \).

7.3.22. (a) Write \(I = \{ x \in R | ax = 0 \} \). Clearly 0 \(\in I \), so \(I \) is nonempty. For any \(x, y \in I \), we have \(a(x - y) = ax - ay = 0 - 0 = 0 \) and \(a(xy) = (ax)y = 0y = 0 \), so \(I \) is closed under subtraction and multiplication. Thus \(I \) is a subring of \(R \). For any \(x \in I \) and \(r \in R \), \(a.xr) = (ax)r = 0 \), so \(I s \subset R \) for all \(s \in R \). Thus \(I \) is a right ideal. Similarly, the left annihilator is a left ideal.

(b) Write \(I = \{ x \in R | xa = 0 \) for all \(a \in L \} \). By an argument analogous to part (a) we see \(I \) is a subring. For any \(r \in R, x \in I, a \in L \) we have \((rx)a = r(xa) = r0 = 0 \) and \((xr)a = x(ra) = 0 \) since \(ra \in L \). Thus \(I \) is a two-sided ideal.