Due: Friday, January 27, 2017 at noon.

All numbered problems are from Dummit and Foote, Third Ed.
All problems will be graded. Show all work to receive full credit.

Read sections: 7.6, 8.1, 8.2 and 8.3 of the textbook.

- From section 7.6: problem 3.

 - Let F be a field and $F[x]$ the rings of polynomials in one variable x and coefficients in F. Let $f(x) \in F[x]$ of degree n and assume $f(x)$ is a product of distinct linear factors, i.e.

 $$f(x) = \prod_{i=1}^{n} (x - a_i)$$

 where $a_i \in F$ are all distinct.

 Prove that the ring $F[x]/(f(x))$ is isomorphic to F^n.

- From section 8.1: problems 4 and 11 but under the assumption that R is a PID (not an ED).

- From section 8.2: 4 and 7.

 \textit{(Hint to problem 4):} Rephrase part (ii) in terms of ideals in R. Use Zorn’s Lemma.

The following problem is for extra credits:

- Let F be a field, write $R = F[[X]]$ for the ring of formal power series in the indeterminate X with coefficients in F (see problem 3 of section 7.2 for definition), and $Q = F((X))$ for the ring of formal Laurent series (see problem 4 of section 7.2 for definition). Prove that

 1. R is an integral domain.
 2. A power series $f(x) \in F[[x]]$ is a unit if and only if $f(0) \neq 0$ (cfr. with problem 3 part (c)).
 3. Q is a field (i.e. problem 4 part (a)).
 4. Q is the fraction field of R.