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Supplement 5: On the Consistency of MLE

This supplement fills in the details and addresses some of the issues addressed in Sec-
tion 17.13 ⋆ on the consistency of Maximum Likelihood Estimators.
S5.1 General issues with maximization

The strategy of Section 17.13 ⋆ is to show that if θ is not the “true” θ0, then L(θ; x) < L(θ0; x)
with high probability. This raises some issues about maximizers that are completely independent
of the probabilistic issues. We consider them here.

S5.1.1 Question Let g : Θ → R. Assume that θ∗ is the unique maximizer of g over Θ. If
g(θn) → g(θ∗), must it be true that θn → θ∗?

The answer to this is No. Here are a couple of examples of what can go wrong.

S5.1.2 Example Let Θ = [0, 1], and define g : Θ → R by

g(θ) =


0 θ = 0
1 − θ 0 < θ < 1
1 θ = 1.

See Figure 17.6. Then θ∗ = 1 maximizes g over Θ = [0, 1], and g(θ∗) = 1. Let θn = 1/n. Then

g(θn) = 1 − (1/n) −−−−→
n→∞

1 = g(θ∗),

but
θn → 0 and g(0) = 0 ̸= 1 = g(θ∗).

The problem here is that g is not continuous. □
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Figure 17.6. Discontinuity.
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S5.1.3 Example Let Θ = [0, ∞), and define g : Θ → R by

g(θ) =

{
1 − θ 0 ⩽ θ ⩽ 1
1 − (1/θ) θ ⩾ 1.

See Figure 17.7.
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Figure 17.7. Noncompactness.

Then θ∗ = 0 maximizes g over Θ = [0, ∞), and g(θ∗) = 1. Let θn = n. Then

g(θn) = 1 − (1/n) −−−−→
n→∞

1 = g(θ∗),

but θn does not converge at all.
The problem here is not that g is discontinuous, but that the sequence θn is unbounded.
There are two ways to deal with this issue. One is to bound θ, which is artificial. The other

is to guarantee that as ∥θn∥ → ∞ that g(θn) is bounded away from g(θ∗). □

The next lemma is a special case of the Berge Maximum Theorem [1, Theorem 12.1, p. 64].

S5.1.4 Lemma Let Θ be a closed bounded subset of Rn, and let g : Θ → R be continuous.
Assume that θ∗ is the unique maximizer of g over Θ. If θn is a sequence in Θ satisfying
g(θn) → g(θ∗), then θn → θ∗.

Proof : We wish to show that for any small ε > 0, there is an N such that for all n ⩾ N ,
we have ∥θn − θ∗∥ < ε. Let Θ′ = {θ ∈ Θ : ∥θn − θ∗∥ ⩾ ε}. (If Θ is a singleton {θ∗}, the
conclusion is trivial, so assume that Θ has at least one other point.) If ε is small enough, then
Θ′ is nonempty, and closed and bounded. Therefore by the well-known Weierstrass Theorem [2,
pp. 89–90], g achieves a maximum value m on Θ′. By assumption, g(θ∗) > m, and g(θn) → g(θ∗).
Consequently there is some N such that for all n ⩾ N , we have g(θn) > m, which implies θn /∈ Θ′,
so ∥θn − θ∗∥ < ε.

S5.1.5 Corollary Let Θ be a closed subset of Rn, and let g : Θ → R be continuous. Assume
that θ∗ is the unique maximizer of g over Θ. Assume that there is some M > 0 and some
m < g(θ∗) such that

∥θ − θ∗∥ > M =⇒ g(θ) < m.

If θn is a sequence in Θ satisfying g(θn) → g(θ∗), then θn → θ∗.

Proof : The set Θ′′ = {θ ∈ Θ : ∥θ −θ∗∥ ⩽ M} is a closed bounded set, and if g(θn) → g(θ∗) > m
there is some N such that for all n ⩾ N , we have θn ∈ Θ′′. Now apply the lemma to Θ′′.

S5.2 Assumptions for consistency

We now turn to the assumptions of Wald [3] and Wolfowitz [4]. I have renumbered some of
them, and slightly strengthened a few others. Another difference is that Wald states some of his
hypotheses in terms of the true parameter θ0, but since we do not know what the true parameter
is, we essentially to have to verify the hypotheses for every possible θ0. I will make that more
explicit.
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S5.2.1 Assumptions Assume the following:

1. (Basic nature of likelihood) The parameter space Θ is a closed subset of Rk.
Either (i) for every θ ∈ Θ, f(·; θ) is a density; or (ii) for every θ ∈ Θ, f(·; θ) is a probability
mass function.
Even in case (ii), I will write

∫
f(x; θ) dx instead of

∑
x f(x; θ). You should not get confused.

2. (Identification) For every θ ̸= θ′,

Pθ (f(X; θ) ̸= f(X; θ′)) > 0.

(That is, different parameters define different distributions.)

3. (Integrability of log-likelihood) For each θ,

Eθ|ln f(X; θ)| =
∫

|ln f(x; θ)|f(x; θ) dx < ∞.

4. (Continuity in θ) For each x, if θn → θ, then f(x; θn) → f(x; θ).
(This is nominally stronger than Wald’s Assumption 3, which allows for some x to be exceptions,
provided the set of such x has probability zero under the “true” parameter θ0.)

5. For each x, if ∥θn∥ → ∞, then f(x; θn) → 0.
(This assumption is true for every distribution we have looked at, and serves to avoid the
difficulties in Example S5.1.3.)

6. (Technical conditions to ensure that certain expectations are finite and continuous in θ)
[ To be written down at some later date. ]
(This is Wald’s assumptions 2)

Bibliography

[1] K. C. Border. 1985. Fixed point theorems with applications to economics and game theory.
New York: Cambridge University Press.

[2] W. Rudin. 1976. Principles of mathematical analysis, 3d. ed. International Series in Pure
and Applied Mathematics. New York: McGraw Hill.

[3] A. Wald. 1949. Note on the consistency of the maximum likelihood estimate. Annals of
Mathematical Statistics 20(4):595–601. http://www.jstor.org/stable/2236315

[4] J. Wolfowitz. 1949. On Wald’s proof of the consistency of the maximum likelihood estimate.
Annals of Mathematical Statistics 20(4):601–602.

http://www.jstor.org/stable/2236316

KC Border v. 2017.01.23::11.58

http://www.jstor.org/stable/2236315
http://www.jstor.org/stable/2236316



	Differentiating an integral
	Differentiating through an integral
	An illustrative (counter)example
	Bibliography


