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Lecture 16: Simple Random Walk

In 1950 William Feller published An Introduction to Probability Theory and Its
Applications [10]. According to Feller [11, p. vii], at the time “few mathematicians
outside the Soviet Union recognized probability as a legitimate branch of mathemat-
ics.” In 1957, he published a second edition, “which was in fact motivated principally
by the unexpected discovery that [Chapter III’s] enticing material could be treated
by elementary methods.” Here is an elementary treatment of some of these fun and
possibly counterintuitive facts about random walks, the subject of Chapter III. It is
based primarily on Feller [11, Chapter 3] and [12, Chapter 12], but I have tried to
make it even easier to follow.

16.1 ⋆ What is the simple random walk?

Let X1, . . . , Xt, . . . be a sequence of independent Rademacher random variables,

Xt =

{
1 with probability 1/2
−1 with probability 1/2

so
E Xt = 0, and Var Xt = 1 (t = 1, 2, . . . )

(Imagine a game played between Hetty and Taylor, in which a fair coin is tossed repeatedly.
When Heads occurs, Hetty wins a dollar from Taylor, and when Tails occurs Taylor wins a dollar
from Hetty. Then Xt is the change in Hetty’s net winnings on the tth coin toss.)

The index t indicates a point in time. Feller uses the term epoch to denote a particular
moment t, and reserves the use of the word “time” to refer to a duration or interval of time,
rather than a point in time, and I shall adhere to his convention. The set of epochs is the set

Z+ = {0, 1, 2, . . . }

of nonnegative integers. The epoch 0 is the moment before any coin toss.
For each t, define the running sums

St = X1 + · · · + Xt.

For convenience, we define S0 = 0.
(The random variable St is Hetty’s total net winnings at epoch t, that is, after t coin tosses.)
It follows that for each St,

E St = 0 and Var St = t.

The sequence of random variables S0, . . . , St, . . . , t ∈ Z+ is a discrete-time stochastic process
known as the simple random walk on the integers. It is both a martingale (E(St+s

∣∣ St) =
St) and a stationary Markov chain (the distribution of St+s

∣∣ St = kt, . . . , S1 = k1 depends only
on the value kt).

16.1.1 Remark The walk St = X1 + · · · + Xt can be “restarted” at any epoch n and it will
have the same probabilistic properties. By this I mean that the process defined by

Ŝt = Sn+t − Sn = Xn+1 + · · · + Xn+t,

is also a simple random walk.

16–1



Ma 3/103 Winter 2017
KC Border Random Walk 16–2

16.2 ⋆ Asymptotics

The Strong Law of Large Numbers tells us that

St

t
−−−→
t→∞

0 a.s.,

and the Central Limit Theorem tells us that
St√

t

D−−−→
t→∞

N(0, 1).

Recall that the probability that the absolute value of a mean-zero Normal random variable
exceeds its standard deviation is 2

(
1 − Φ(1)

)
= 0.317, where Φ is the standard normal cdf. The

standard deviation of St is
√

t, so there is about a two-thirds chance that St lies in the interval
[−

√
t,

√
t]. See Figure 16.1. At each largish t, about two-thirds of the paths cross the vertical
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Figure 16.1. The areas bounded by ±t and by ±
√

t.

line at t in the red area.
But the Strong Law of Large Numbers and the Central Limit Theorem are rather coarse and

may mislead us about behavior of the random walk. They do not address interesting questions
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such as, Which values can the walk assume?, What are the waiting times between milestones?,
or What does a “typical” path look like?

16.3 ⋆ Paths as the sample space

A natural way to think about the random walk is in term of paths. The outcome path s =
(s1, s2, . . . ) can be identified with the sequence (t, st), t = 0, 1, . . . of ordered pairs, or better yet
with the graph of the piecewise linear function that connects the points (t, st). See Figure 16.2.

Figure 16.2. A sample path of a random walk.

There are infinitely many paths, but it is also convenient to refer to an initial segment of a
path as a path. (Technically, the initial segment defines a set, or equivalence class, of paths that
agree through some epoch.)

There are 2t paths the walk may take through epoch t, and each one has equal probability,
namely 1/2t.

Let us say that the path s visits k at epoch t if

st = k.

If there is a path s with st = k, we say that the path s reaches (t, k) and that (t, k) is
reachable from the origin. More generally, if (t0, k0) and (t1, k1), where t1 > t0, are on the
same path, then we say that (t1, k1) is reachable from (t0, k0).

16.3.1 Characterization of reachable points

Which of the lattice points (t, k) ∈ Z+ × Z can belong to a path? Or in other words, which
points (t, k) are reachable? Not all lattice points are reachable. For instance, the points (1, 0)
and (1, 2) are not reachable since S1 is either 1 or −1.

16.3.1 Proposition (Criterion for reachability) In order for (t, k) to be reachable, there
must be nonnegative integers p and m, where p is the number of plus ones and m is the number
of minus ones such that

p + m = t and p − m = k,

p = t + k

2
and m = t − k

2
.

(1)

KC Border v. 2017.02.10::14.28
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Reachability implies that both t + k and t − k must be even, so that

t and k must have the same parity.

We must also have t ⩾ |k|. But those are the only restrictions.
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Figure 16.3. Reachable points are the big dots.

Many points can be reached by more than one path from the origin.
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16.3.2 Definition The number of initial segments of paths that reach the reachable point
(t, k) is denoted

Nt,k.

If (t, k) is not reachable, then Nt,k = 0.

16.3.3 Proposition (Number of paths that reach (t, k)) If (t, k) is reachable, then

Nt,k =
(

t
t+k

2

)
=

(
t

t−k
2

)
. (2)

Proof : By Proposition 16.3.1, if (t, k) is reachable, there must be nonnegative integers p and m,
where p is the number of plus ones and m is the number of minus ones such that (1) is satisfied.

Since the p (1)s and m (−1)s can be arranged in any order, there are

Nt,k =
(

p + m

p

)
=

(
p + m

m

)
=

(
t

t+k
2

)
=

(
t

t−k
2

)
paths with this property.

Since there are 2t paths of length t, the probability is given by:

Define
pt,k = P (St = k) .

16.3.4 Corollary (pt,k) If (t, k) is reachable, then

pt,k =
(

t
t+k

2

)
2−t. (3)

16.3.5 Corollary If (t1, k1) is reachable from (t0, k0), then the number of sample paths con-
necting them is

Nt1−t0,k1−k0 . (4)

16.3.2 The Reflection Principle

Feller referred to “elementary methods” that simplified the analysis of the simple random walk.
The procedure is this: Treat paths as piecewise linear curves in the plane. Use the simple
geometric operations of cutting, joining, sliding, rotating, and reflecting to create new paths.
Use this technique to demonstrate the one-to-one or two-to-one correspondence between events
(sets of paths). If we can find a one-to-one correspondence between a set we care about and a
set we can easily count, then we can compute its probability.

The first example of this geometric manipulation approach is called the Reflection Principle.

16.3.6 The Reflection Principle Let (t1, k1) be reachable from (t0, k0) and on the same
side of the time axis. Then there is a one-to-one correspondence between the set of paths
from (t0, k0) to (t1, k1) that meet (touch or cross) the time axis and the set of all paths from
(t0, −k0) to (t1, k1).

KC Border v. 2017.02.10::14.28
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Figure 16.4. The red path is the reflection of the blue path up until the first epoch t∗ where the
blue path touches the time axis. This establishes a one-to-one correspondence between paths
from (t0, −k0) to (t1, k1) and paths from (t0, k0) to (t1, k1) that touch the time axis at some
t0 < t < t1. q.e.d.

Proof : One picture is worth a thousand words, so Figure 16.4 should suffice for a proof.

A consequence is the following.

16.3.7 The Ballot Theorem If k > 0, then there are exactly

k

n
Nn,k

paths from the origin to (n, k) satisfying st > 0, t = 1, . . . , n.

Proof :

• If st > 0 for all t = 1, . . . , n, then s1 = 1.

• By Corollary 16.3.5, the total number of paths from (1, 1) to (t1, k) is Nn−1,k−1.

• Some of these paths though touch the time axis, and when they do, they do not satisfy
st > 0. How many of these paths touch the time axis? By the Reflection Principle, it is as many
as the paths from (1, −1) to (n, k), which by Corollary 16.3.5 is Nn−1,k+1.

• Thus the number of paths from (1, 1) to (n, k) that do not touch the time axis is

Nn−1,k−1 − Nn−1,k+1.

• Let p and m be as defined by (1). Then p + m = n, p − m = k, n + k = 2p, so the following

v. 2017.02.10::14.28 KC Border
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“trite calculation,” as Feller puts it, yields

Nn−1,k−1 − Nn−1,k+1 =
(

n − 1
(n + k − 2)/2

)
−

(
n − 1

(n + k)/2

)
=

(
m + p − 1

p − 1

)
−

(
m + p − 1

p

)
= (m + p − 1)!

m!(p − 1)!
− (m + p − 1)!

p!(m − 1)!

= p(m + p − 1)!
m!p!

− m(m + p − 1)!
p!m!

= (p − m) (m + p − 1)!
m!p!

= p − m

p + m

(m + p)!
m!p!

= k

n
Nn,k.

Why is this called the Ballot Theorem?

16.3.8 The Ballot Theorem, version 2 Suppose an election with n ballots cast has one
candidate winning by k votes. Count the votes in random order. The probability the winning
candidate always leads is

k

n
.

16.3.9 The Ballot Theorem, version 3 Suppose an election has one candidate getting p
votes and the other getting m votes with p > m. Count the votes in random order. The
probability the winning candidate always leads is

p − m

p + m
.

16.4 ⋆ Returns to zero

16.4.1 Definition We say that the walk equalizes or returns to zero at epoch t if St = 0.

Epoch t must be even for equalization to occur, so let t = 2m. The number of paths from
the origin to (2m, 0) is N2m,0, so the probability u2m defined by

u2m = P (S2m = 0) ,

satisfies
u2m = N2m,0

22m
=

(
2m

m

)
1

22m
(m ⩾ 0). (5)

Recall

16.4.2 Proposition (Stirling’s formula)

n! = e−nnn
√

2πn(1 + εn)

where εn → 0 as n → ∞.

KC Border v. 2017.02.10::14.28
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For a proof, see, e.g., Feller [11, p. 52].
Stirling’s formula applied to (5) implies that

u2m ∼ 1√
πm

, (6)

where the notation am ∼ bm means am/bm → 1 as m → ∞.

16.5 ⋆ The Main Lemma

The next application of the geometric manipulation of paths approach is to prove the following
mildly surprising result. (It is the distillation of Lemma 3.1 and the discussion following on
pp. 76–77, and problem 3.10.7, p. 96 in Feller [11].)

16.5.1 Main Lemma The following are equal:

P (S2m = 0) (= u2m) (7)

P (S1 ̸= 0, . . . , S2m ̸= 0) (8)

P (S1 ⩾ 0, . . . , S2m ⩾ 0) (9)
P (S1 ⩽ 0, . . . , S2m ⩽ 0) (10)

2P (S1 > 0, . . . , S2m > 0) (11)
2P (S1 < 0, . . . , S2m < 0) (12)

Proof : Start with the easy cases.

• By symmetry, (9) = (10) and (11) = (12).

• In order to have (S1 ̸= 0, . . . , S2m ̸= 0), either (S1 > 0, . . . , S2m > 0) or (S1 < 0, . . . , S2m < 0).
Both are equally likely. So (8) = (11) = (12).

Let

Zt denote the set of paths satisfying st = 0,

Pt denote the set of paths satisfying (s1 > 0, . . . , st > 0) ,

Nt denote the set of paths satisfying (s1 ⩾ 0, . . . , st ⩾ 0) .

(The mnemonic is zero, positive, and nonnegative.)

16.5.2 Lemma There is a one-to-one correspondence between P2m and N2m−1:

Proof : Every path s in P2m passes through (1, 1) and satisfies st ⩾ 1 for t = 1, . . . , 2m, so shifting
the origin to (1, 1) creates a path s′ of length 2m − 1 that satisfies s′

t ⩾ 0, t = 1, . . . , 2m − 1.
That is, s′ ∈ N2m−1. See Figure 16.5.

• Lemma 16.5.2 establishes a one-to-one correspondence between P2m and N2m−1, so

|N2m−1| = |P2m|.

Thus
P (N2m−1) = |N2m−1|

22m−1 = 2 |N2m−1|
22m

= 2 |P2m|
22m

= 2P (P2m).

v. 2017.02.10::14.28 KC Border
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s

s′

Figure 16.5. The paths s ∈ P2m and s′ ∈ N2m−1.

Since 2m − 1 is odd, and equalization occurs only in even epochs, we must have s′
2m−1 > 0

for any s′ ∈ N2m−1. There are two possible continuations of s′ and both of them will satisfy
s′

2m ⩾ 0. That is,
|N2m| = 2|N2m−1|.

Thus

P (N2m) = 2P (N2m−1) = 2P (P2m).

• So far we have shown (8) = (9) = (10) = (11) = (12).

• We complete the Main Lemma by showing (7) = (9), or

P (S2m = 0) = P (S1 ⩾ 0, . . . , S2m ⩾ 0) .

We shall establish this with the following lemma. Feller attributes this construction used in the
proof to Edward Nelson.

16.5.3 Nelson’s Lemma There is a one-to-one correspondence between Z2m and N2m.
Moreover, a path in Z2m with minimum value −k corresponds to a path in N2m with terminal
value 2k.

Proof : Let s be a path in Z2m. It achieves a minimum value −k∗ ⩽ 0 at some t ⩽ 2m, perhaps
more than once. Let t∗ be the smallest t for which st = −k∗.

If s also belongs to N2m, that is, if st ⩾ 0 for all t = 0, . . . , 2m, then k∗ = 0 and t∗ = 0, and
we leave the path alone. If s does not belongs to N2m, that is, if st < 0 for some 0 < t < 2m,
then k∗ > 0 and 0 < t∗ < 2m. See Figure 16.6.

We create a new path s′ in N2m as follows: Take the path segment from (0, 0) to (t∗, −k∗),
and reflect it about the vertical line t = t∗. Slide this reversed segment to the point (2m, 0).
See Figure 16.7.

KC Border v. 2017.02.10::14.28
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(t∗, −k∗)

 k∗

Figure 16.6. The path s ∈ Z2m. Epoch t∗ is the first epoch at which the minimum −k∗ occurs.

k∗


(t∗, −k∗)

 k∗

Figure 16.7. Reflect the initial segment around t = t∗, and slide it to the end.

v. 2017.02.10::14.28 KC Border
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Now slide the whole thing so that (t∗, −k∗) becomes the new origin. The path now ends at
(2m, 2k∗), where k∗ > 0. See Figure 16.8.


2k∗

Figure 16.8. Now slide (t∗, −k∗) to the origin to get the path s′ ∈ N2m.

This process is invertible: Let s be a path in N2m. If S2m = 0, leave it alone. If s2m > 0, since
s2m is even, write s2m = 2k̄ > 0. Let t̄ be the last time st = k̄. See Figure 16.9.


2k̄

t̄

Figure 16.9. The path s ∈ N2m satisfies s2m = 2k̄ > 0. Epoch t̄ is the last epoch for which
st = k.

KC Border v. 2017.02.10::14.28
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Take the segment of the path from (t̄, k̄) to (2m, 2k̄), reflect it about the vertical line t = t̄,
slide it to the origin, (so it juts out up and to the left). See Figure 16.10.

 k̄

 k̄

Figure 16.10. Take the segment of the path from (t̄, k̄) to (2m, 2k̄), reflect it about the vertical
line t = t̄, slide it to the origin.

Now make the beginning the new origin. See Figure 16.11. This new path s′′ satisfies
s2m = 0, and has a strictly negative minimum.

 k̄

Figure 16.11. The path s′′ ∈ Z2m.

In fact the procedure above inverts the first procedure. This establishes a one-to-one corre-
spondence between Z2m and N2m.

• The proof of the Main Lemma is now finished.

16.6 ⋆ First return to zero

16.6.1 Definition The first return to zero happens at epoch t = 2m if s1 ̸= 0, …s2m−1 ̸= 0
and s2m = st = 0. Let ft = f2m denote the probability of this event, and define f0 = 0.

The next result is equation (3.7), p. 78, [11].

16.6.2 Corollary The explicit formula for f2m is

f2m = u2m−2 − u2m = 1
2m − 1

u2m = 1
2m − 1

(
2m

m

)
1

22m
(m = 1, 2, . . . ). (13)

v. 2017.02.10::14.28 KC Border
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Proof : The event that the first return to zero occurs at epoch 2m is

(S1 ̸= 0, . . . , S2m−2 ̸= 0, S2m = 0) = (S1 ̸= 0, . . . , S2m−2 ̸= 0) \ (S1 ̸= 0, . . . , S2m ̸= 0)

Since (S1 ̸= 0, . . . , S2m ̸= 0) ⊂ (S1 ̸= 0, . . . , S2m−2 ̸= 0)

P ((S1 ̸= 0, . . . , S2m−2 ̸= 0) \ (S1 ̸= 0, . . . , S2m ̸= 0))
= P (S1 ̸= 0, . . . , S2m−2 ̸= 0) − P (S1 ̸= 0, . . . , S2m ̸= 0) ,

which by the Main Lemma is
u2m−2 − u2m.

Equation (5) implies

u2m−2 = (2m − 2)!
(m − 1)!(m − 1)!

1
22m−2 =

(
4m2

2m(2m − 1)

)
(2m)!
m!m!

1
22m

so u2m−2 − u2m =
( 2m

2m−1 − 1
)
u2m, which implies the second and third equalities of (13).

16.6.3 Corollary With probability 1, the random walk returns to zero. Consequently, with
probability 1 it returns to zero infinitely often.

Proof : The event that the walk returns to zero is the union over m of the disjoint events that the
first return occurs at epoch 2m. Its probability is just the sum of the first return probabilities.
According to (13), we have the telescoping series

∞∑
m=1

f2m =
∞∑

m=1
(u2(m−1) − u2m) = u0 = 1. (14)

While the walk is certain to return to zero again and again, you wouldn’t want to hold your
breath waiting for it. Cf. Theorem 1, p. 395, [12].

16.6.4 Proposition (Waiting time for first return to zero) Let W denote the epoch of the
first return to zero. Then

E W = ∞.

Proof : From Corollary 16.6.2,

E W =
∞∑

m=1
2m f2m =

∞∑
m=1

2m

2m − 1
u2m. (15)

From (6),
2m

2m−1 u2m

1√
πm

−−−−→
m→∞

1.

But
∞∑

m=1

1√
πm

⩾ 1√
π

∞∑
m=1

1
m

→ ∞.

So by the Limit Comparison Test [2, Theorem 10.9, p. 396], the series (15) also diverges to ∞.

KC Border v. 2017.02.10::14.28
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16.7 ⋆ Recurrence

16.7.1 Definition The value k is recurrent if

P (St = k infinitely often) = 1.

Corollary 16.6.3 proved that 0 was a recurrent value. An astonishingly simple consequence
of this that every value is recurrent.

16.7.2 Corollary For every integer k, with probability 1 the random walk visits k. Con-
sequently, with probability 1 it visits k infinitely often.

Proof : The result relies heavily on symmetry, and so does this proof.

• For every k, the probability that the walk visits k is greater than zero. Indeed, for k ⩾ 0,
we have P (Sk = k) = 2−k > 0; and for k ⩽ 0, we have P (Sk = k) = 2k > 0.

• Once the walk visits k, the probability that it later visits zero must be one, otherwise the
probability of visiting zero infinitely often could not be one.

• But the probability of reaching 0 from k is the same as reaching k from 0!

• Therefore the probability the walk visits k is one.

• Once at k, the probability of visiting k again is the same as the probability of revisiting
zero from the origin, which is one. Therefore k is recurrent.

This fact is another illustration of the difference between impossibility and probability zero.
The path st = t for all t never returns to zero or anything else, and it is certainly a possible
path. But it has probability zero of occurring.

16.8 ⋆ The Arc Sine Law

The next result appears as [11, Theorem 1, p. 79].
For each m, define the random variable

L2m = the epoch of the last visit to zero, up to and including epoch 2m

= max{t : 0 ⩽ t ⩽ 2m & St = 0}.

Note that L2m = 0 and L2m = 2m are allowed. For convenience, define

α2k,2m = P (L2m = 2k) .

16.8.1 The Arc Sine Law for Last Returns The probability mass function for L2m is
given by

P (L2m = 2k) = α2k,2m = u2ku2(m−k). (k = 0, . . . , m) (16)

Proof : The event (L2m = 2k) can be written

S2k = 0︸ ︷︷ ︸
A

, S2k+2 ̸= 0, . . . , S2m ̸= 0︸ ︷︷ ︸
B

.

Recall that P (AB) = P (B|A)P (A). Now P (A) is just u2k and P (B|A) is just the probability
that starting at 0, the next 2(m−k) values of St are nonzero, which is the same as the probability
that St ̸= 0, t = 1, . . . , 2(m − k). By the Main Lemma 16.5.1 this is equal to u2(m−k).
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Why is this called the Arc Sine Law?: From (6), u2k ∼ 1√
πk

, so for large enough k, m,

α2k,2m = u2ku2(m−k) ≈ 1
π

√
k(m − k)

= 1
m

1

π

√
k
m

(
1 − k

m

) . (17)

See Figure 16.12. As you can see from the figure, the approximation is rather good for even modest

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

k
m

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

k
m

Figure 16.12. Plots of the points (k/m, α2k,2m), k = 0, . . . , m and the function f(x) =
1
m

1
π
√

x(1−x)
, x ∈ [0, 1] for m = 10, 20.

values of k and m, and the highest probabilities are for k = 0 and k = 2m, with the minimum occurring
around m.

The function
f(x) = 1

π
√

x(1 − x)
.

KC Border v. 2017.02.10::14.28



Ma 3/103 Winter 2017
KC Border Random Walk 16–16

is a probability density on the unit interval, and the cumulative distribution function involves the arc
sine function: For 0 ⩽ ρ ⩽ 1, ∫ ρ

0
f(x) dx = 2

π
arcsin √

ρ.

So for every 0 < ρ < 1, for m large enough,

P (L2m ⩽ ρ2m) =
∑

k<ρm

α2k,2m ≈
∫ ρ

0
f(x) dx = 2

π
arcsin √

ρ. (18)

The Arc Sine Law has the following remarkable consequence, [11, p. 78].

16.8.2 Corollary For every m,

P (the latest return to 0 through epoch 2m occurs no later than epoch m)

= P (L2m ⩽ m) = 1
2

.

In other words, the probability that no equalization has occurred in the last half of the
history is 1/2 regardless of the length of the history.

Proof : For t even, P (L2m = t) = utu2m−t, which is symmetric about m, so m is the median
value of L2m.

16.9 ⋆ Dual walks

We would like to know about the probabilities of visiting points other than zero. To do that,
we shall make use of the dual of a random walk. Recall that the walk S is given by

St = X1 + · · · Xt,

where the Xts are independent and identically distributed Rademacher random variables.

16.9.1 Definition Fix a length n, and create a new random walk S∗ of length n by reversing
the order of the Xts. That is, define

X∗
1 = Xn, . . . , X∗

n = X1,

and
S∗

t = X∗
1 + · · · + X∗

t = Xn + · · · + Xn−t+1 = Sn − Sn−t, (t = 1, . . . , n). (19)
This walk is called the dual of S.

Since Sn and S∗
n are sums of the same Xts, they have the same terminal points, that is,

Sn = S∗
n. More importantly, every event related to S has a dual event related to S∗ that has

same the probability. Given a path s for S, the dual path s∗ for S∗ is gotten by rotating the
path s one hundred eighty degrees around the origin (time reversal), so the left endpoint has
a negative time coordinate, and then sliding the left endpoint to the origin to get s∗. See
Figures 16.13 and 16.14.

For instance, it follows from (19) that

P (Sn = k, S1 > 0, . . . , Sn−1 > 0) = P
(
S∗

n = k, S∗
n > S∗

1 , . . . , S∗
n > S∗

n−1
)

. (20)
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rotate s about the origin

s

slide the left endpoint to origin

s∗

to get s∗

Figure 16.13. Transforming s to s∗.

rotate s∗ about the origin

s∗

slide the left endpoint to origin

s

to get s

Figure 16.14. Transforming s∗ back to s by the same method, (s∗)∗ = s. (This figure also
demonstrates a one-to-one correspondence that proves (20).)
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16.10 ⋆ First visits

This argument is taken from Feller [11, pp. 92–93]. We know from Proposition 16.3.3 that the
probability that St = k is

P (St = k) = Nt,k

2t
=

(
t

t−k
2

)
1
2t

,

provided (t, k) is reachable from the origin. (Otherwise, it is zero.)
Let k be greater than zero. Assume that (n, k) is reachable from the origin. That is, n−k ⩾ 0

and n − k is even. What is the probability that the first visit to k happens at epoch n? This is
the probability of the event

(S1 < Sn, . . . , Sn−1 < Sn, Sn = k) . (21)

Now consider the dual walk S∗. In terms of S∗, it follows from (19) that the event (21) is the
same as (

S∗
1 > 0, . . . , S∗

n−1 > 0, S∗
n = k

)
. (22)

We already know the probability of this dual event. There are 2n paths of length n, and
according to the Ballot Theorem 16.3.7, k

n Nn,k of these paths satisfy s∗
t > 0 for t = 1, . . . , n.

Thus the probability of event (22), and hence of event (21) is

P (the first visit to k occurs at epoch n) = k

n

(
n

n−k
2

)
1
2n

, (23)

provided n − k is a nonnegative even integer. (Otherwise, it is zero.)

If n − k is a nonnegative even integer, write n = 2m + k. It follows from (23) and the fact
that k is recurrent that for each k ⩾ 1,

∞∑
m=0

k

2m + k

(
2m + k

m

)
1

22m+k
= 1, (24)

but don’t ask me to prove it directly.

Aside: You may have noticed a similarity between the values of f2m given in (13) and the terms in (24)
for k = 1. (When I first noticed it, it kept me awake until I could verify the following equalities.)

1 =
∞∑

m=1

f2m equation (14)

=
∞∑

m=1

1
2m − 1

(
2m

m

)
1

22m
equation (13)

=
∞∑

n=0

1
2n + 1

(
2n + 2
n + 1

)
1

22n+2 substitute n = m − 1

=
∞∑

n=0

1
2n + 1

(
2n + 1

n

)
1

22n+1 since
(

2n + 2
n + 1

)
= 2

(
2n + 1

n

)
= 1 from (24) with k = 1.

16.11 ⋆ The number of visits to k before equalization

The following highly counterintuitive result is Example (b) on p. 395 of Feller [12].
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Let k be nonzero, and let

Mk = the count of epochs n for which Sn = k before the first return to zero.

16.11.1 Proposition For each k,
E Mk = 1.

Proof : Since k and −k are symmetric, it suffices to consider k > 0. Let V k
n be the event that a

visit to k occurs at epoch n before the first return to zero. That is,

V k
n = (Sn = k, S1 > 0, . . . , Sn−1 > 0) .

Then
Mk =

∞∑
n=1

1V k
n

,

where 1V k
n

is the indicator function of the event V k
n .

By the Monotone Convergence Theorem (oops, I never told you about that one, but see, for
instance, [1, Theorem 11.19, p. 414]) we have

E Mk =
∞∑

n=1
E 1V k

n

=
∞∑

n=1
P (V k

n )

Now we need to find P (V k
n ). Consider the dual walk S∗

1 , . . . , S∗
n. By (20), we have

P (Sn = k, S1 > 0, . . . , Sn−1 > 0) = P
(
S∗

n = k, S∗
n > S∗

1 , . . . , S∗
n > S∗

n−1
)

= P (first visit to k occurs at epoch n)

Therefore

E Mk =
∞∑

n=1
P (V k

n )

=
∞∑

n=1
P (first visit to k occurs at epoch n)

= P (walk visits k)
= 1.

The last equality holds because k is recurrent.

16.12 ⋆ Sign changes

There is a sign change at epoch t if St−1 and St+1 have opposite signs. This requires that
St = 0, and that t be even.

16.12.1 Theorem Let t = 2m + 1 be odd. Then

P (there are exactly c sign changes before epoch t) = 2P (St = 2c + 1) . (25)
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Proof : To save space, let

Ct,c = (there are exactly c sign changes before epoch t) .

Now

P (Ct,c) = P (Ct,c

∣∣ S1 = 1)P (S1 = 1) + P (Ct,c

∣∣ S1 = −1)P (S1 = −1) = P (Ct,c

∣∣ S1 = 1),

where the last equality follows from symmetry. That is, the probability of Ct,c is independent
of the value of S1, so we may assume that S1 = 1.

Now P (Ct,c

∣∣ S1 = 1) is the number of paths starting at (1, 1) that have exactly c sign changes
before epoch t = 2m+1 divided by the number of paths starting at epoch 1 and ending at epoch
t = 2m + 1. Thus the theorem reduces to the following Lemma.

16.12.2 Lemma For every odd t = 2m + 1, there is a one-to-one correspondence between the
sets of paths {s : s1 = 1 and s has exactly c sign changes before t} and {s : st = 2c + 1}.

I don’t have time to write up the proof of the lemma, but you can find it in Feller [11,
Section III.5, pp. 84–86].

16.12.3 Corollary The probability of c sign changes decreases with c. Consequently the most
likely number of sign changes is zero!

16.13 ⋆ More remarkable facts

Blackwell, Deuel, and Freedman [7] discovered the following theorem while validating some code
for an IBM 7090 computation.

16.13.1 Theorem Let Vm,n be the event that there exists t satisfying m ⩽ t < m + n and
S2t = 0. That is, Vm,n is the event that there is an equalization between epochs 2m − 1 and
2(m + n) − 1. Then for all m, n ⩾ 1,

P (Vm,n) + P (Vn,m) = 1.

Note that the Corollary 16.8.2 of the Arcsine Law can be rewritten as the special case
P (Vm,m) = 1/2.

16.14 ⋆ Asymmetry

The remainder of this discussion relies heavily on the exposition by Frederick Mosteller [13,
pp. 51–55].

The preceding results made heavy use of the symmetry that arose from the fact that upticks
and downticks were exactly equally likely. What happens when that is not the case?

Let X1, . . . , Xt, . . . be a sequence of independent Rademacher(p) random variables,

Xt =

{
1 with probability p

−1 with probability 1 − p

so
E Xt = 2p − 1, and Var Xt = 4p(1 − p) (t = 1, 2, . . . )

It is convenient to consider starting walks at arbitrary integers, so let

S0 = m, St = S0 + X1 + · · · + Xt (t ⩾ 1)

denote the asymmetric random walk starting at m with uptick probability p. It is no
longer a martingale, but it is a stationary Markov chain.
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16.15 ⋆ Reaching zero

For a symmetric random walk, every state is recurrent. This fails for the asymmetric random
walk. Let’s calculate the probability zm of reaching zero starting at m > 0.

Let’s start with S0 = m. In order to reach 0 from m, you must first reach m − 1. Then from
m − 1, you must reach m − 2, etc., all the way to reaching 0 from 1. Each of these steps looks
exactly like the last. I also claim that the independence of the Xts means that the probability
of all of these steps happening is the product of their probabilities.1 Thus

zm = zm
1 , (m > 1).

Now the trick is to calculate z1. Well, starting at 1, with probability 1 − p we reach 0 on the
first step. With probability p we reach 2, and then with probability z2 = z2

1 we reach 0. Thus

z1 = 1 − p + pz2
1 .

This is a quadratic that has two solutions,

z1 = 1, z1 = 1 − p

p
.

This makes sense, because z1 really depends on p. For p = 0 (never gain), clearly z1 = 1. And
when p = 1 (never lose), z1 = 0. When p = 1/2 both roots agree and z1 = 1.

Figure 16.15 shows a plot of 1 and (1 − p)/p against p. These are the candidates for z1(p).
We know z1(p) at three points p = 0, 1/2, 1. So if z1(p) is a continuous function, we must have

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Figure 16.15. Plot of 1 and (1 − p)/p against p.

z1 =

{
1 p ⩽ 1/2
1−p

p p ⩾ 12
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Figure 16.16. z1(p).

See Figure 16.16.
So if p > 1/2, the probability of reaching zero from m is

zm(p) =
(

1 − p

p

)m

→ 0 as m → ∞.

But for p = 1/2, zm(p) is always 1. This is just one of the ways the simple random walk is
special.

16.16 ⋆ The Gambler’s Ruin problem

The random walk is a model of the fortunes of a gambler who always make the same size bet.
We saw that if the probability of winning is p > 1/2, then there is a positive probability that
the gambler may never go bankrupt. 2 What happens when the gambler plays against a casino
that has limited resources? What is the probability that the gambler “breaks the bank?” That
is, the casino goes bankrupt before the gambler does?

• One gambler, call him Bond, starts with fortune b.

• The other, call him Goldfinger, start with fortune g.

• They play until one is bankrupted. (How do we know this happens with probability 1?)

• Let p be the probability Bond wins each bet. As Bond is the better gambler, assume that

p ⩾ 1/2,

1 You should not let me get away with that assertion without more work.
2 The term bankrupt, meaning almost literally “broken bank,” is derived from the ancient Greek practice of

punishing debtors who cannot repay their debts by breaking (rupturing) their workbench (bank).
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and to simplify notation, let
q = 1 − p.

• What is the probability that Bond (the stronger player) breaks Goldfinger?

Aside: This is an example of a Markov chain with two absorbing states. A state in a Markov chain
is absorbing if the probability of leaving it is zero. The two absorbing states are 0 (Bond is broken) and
m + n (Goldfinger is broken).

• Let
B denote the probability that Bond breaks Goldfinger.

• Consider first the counterfactual that Bond is not playing against Goldfinger, but is playing
against the Federal Reserve Bank, which can create money at will. We have seen that the
probability the Fed breaks Bond is just (q/p)b.
There two ways the Fed can break Bond:

◦ One is that Bond never attains b + g on his way to bankruptcy,
◦ the other is that he does attain b + g before bankruptcy, but is still broken by the Fed.

• The event that Bond never attains b+g on his way to bankruptcy has the same probability
that Goldfinger breaks Bond, namely 1 − B.

• The event that Bond attains b+g before bankruptcy is the event that Bond breaks Goldfin-
ger, which happens with probability B.

• The probability that the Fed breaks Bond upon reaching b + g is just (q/p)b+g.

• Thus(
1 − p

p

)b

︸ ︷︷ ︸
prob Fed breaks Bond

= (1 − B)︸ ︷︷ ︸
prob Goldfinger breaks Bond

+ B︸︷︷︸
prob Bond reaches b + g

(
1 − p

p

)b+g

︸ ︷︷ ︸
prob Fed breaks Bond from b + g

• Solving for B gives

Probability B that Bond breaks Goldfinger =
1 −

(
1−p

p

)b

1 −
(

1−p
p

)b+g
.

• For the case p = 1/2, the formula gives 0/0, but evaluating it with l’Hôpital’s rule gives

b

b + g
.

• Here is a chart showing the effect of p and b on the probability that Bond breaks Goldfinger,
holding g fixed at 10.
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16.17 ⋆ Brownian motion

Brownian motion is a continuous time stochastic process on a time interval, say T = [0, 1] that
is an idealized version of the simple random walk in which with “infinitely short” steps being
taken “infinitely often” in any time interval. The summary is this. There is an uncountable
probability space (Ω, Σ, P ) and a real function

B : T × Ω → R.

For each t ∈ T there is a random variable

Bt : Ω → R defined by Bt(ω) = B(t, ω),

and for each ω ∈ Ω, there is a function

Bω : T → R defined by Bω(t) = B(t, ω).

The key properties are

• For each t ∈ T , the random variable Bt has a Normal(0, t) distribution.

• Increments are stochastically independent. That is, whenever

0 ⩽ t0 ⩽ t1 ⩽ · · · ⩽ tk ⩽ 1,

the random variables
Bt1 − Bt0 , Bt2 − Bt1 , . . . , Btk

− Btk−1

are stochastically independent.

• For every ω ∈ Ω, the function Bω is continuous.

These properties pin Brownian motion. But how do we know such a stochastic process
exists? One way to approach it is take as the sample space Ω the set of continuous function on
[0, 1]. The random experiment consists of drawing a function ω ∈ C[0, 1] at random according
to some probability measure W on C[0, 1], where W has the desired properties. The measure
W is known as Wiener measure after Norbert Wiener [15, pp. 214–234]. Now we just have
find W .
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Let’s start by considering a random walk with many small steps per time interval. Rescale
the simple random walk by taking n steps per epoch, but shortening them to have length 1/

√
n.

Now
X

(n)
k = Xk/

√
n

has mean 0 and variance 1/n. The sum of nt of these scaled Rademachers thus has variance t.
Define the partial sums

S
(n)
k = X

(n)
1 + · · · + X

(n)
k ,

We now squash these down so that every time interval of length k has nk steps in it, and linearly
interpolate to get a continuous function like this:

B(n)(t, ω) = S[nt](ω) + (nt − [nt])X[nt]+1(ω), (t ⩾ 0),

Figure 16.17 show the graph of the function B
(n)
ω for a fixed ω and n = 1, 4, 16. When nt is an
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Figure 16.17. Scaled sample paths of a random walk.

integer, then
B

(n)
t = Snt/

√
n

has mean 0 and variance t. For such t, the Central Limit Theorem implies

Y B
(n)
t

D−−−−→
n→∞

N(0, t).

Also note that for each n, for 0 ⩽ t0 ⩽ t1 ⩽ · · · ⩽ tk ⩽ 1, the random variables

B
(n)
t1

− B
(n)
t0

, B
(n)
t2

− B
(n)
t1

, . . . , B
(n)
tk

− B
(n)
tk−1

are stochastically independent (being the sums of disjoint sets of independent scaled Rademach-
ers).
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At this point I am going to make a lot of claims that are well beyond the scope of this course.��
For each n, B(n) defines a probability distribution on the set C[0, 1] of continuous functions on
the interval as follows. For each subset A, 3 define its probability by

Prob(A) = P{ω ∈ Ω : B(n)
ω ∈ A}.

It is possible to define convergence in distribution for probability distributions on spaces��
such as C[0, 1] (see for instance Aliprantis and Border [1, Chapter 15], Billingsley [4], or
Parthasarathy [14]). 4 Monroe Donsker [9] proved that the probability distribution on C[0, 1]
associated with B(n) converges in distribution to Weiner measure W as n → ∞. This result is
known as Donsker’s Theorem. See also Billingsley [4, § 10, p. 68].

Informally this means that properties of Brownian motion can be deduced as limiting results
from scaled random walks.

As an example, Billingsley [4, pp. 80–83] uses the Arc Sine Law for random walks to prove
the Arc Sine Law for Brownian motion on [0, 1]: If T is the last time Bt = 0, then P (T ⩽ t) =
2
π arcsin

√
t. Compare this with (18) on page 16–16 of these notes.

16.18 What is Brownian motion a model of?

Brownian motion is named after Robert Brown, a 19th century botanist who observed the
motion of pollen particles in water [5, p. 443]. We can generalize Brownian motion to several
dimensions by considering random vector functions, where the components are independent
Brownian motions. To cover such things as the two or three dimensional motion of particles
colliding molecules of air or water. Brownian motion was the first good model of random
diffusion.

In 1900, Louis Bachelier [3, 8] developed a mathematical model for Brownian motion and
argued that stock prices must follow a Brownian motion stochastic process. In 1973 Fischer
Black and Myron Scholes [6] independently rediscovered some of Bachelier’s results.
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