2. (20 pts) [Ch. 4, Problem 2.5 (a), (c)]

Solution. Let A, C be the matrices in question:

$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -2 & 2 & 6 \\ 5 & 1 & -6 \\ -5 & 2 & 9 \end{pmatrix}$$

(a) We have $\det(A - \lambda I) = (4 - \lambda)(1 - \lambda) + 2 = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$. There are two distinct eigenvalues, so we know A must be diagonalizable. Some standard computations give us

$$\ker(A - 2I) = \text{span} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \ker(A - 3I) = \text{span} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Thus $\{(1, 1)^T, (2, 1)^T\}$ forms our basis of eigenvectors, and we have the diagonalization

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}^{-1}.$$

(c) Let us compute the characteristic polynomial of C:

$$\det(C - \lambda I) = \det \begin{pmatrix} -2 - \lambda & 2 & 6 \\ 5 & 1 - \lambda & -6 \\ -5 & 2 & 9 - \lambda \end{pmatrix} = \det \begin{pmatrix} 3 - \lambda & 3 - \lambda & 0 \\ 5 & 1 - \lambda & -6 \\ -5 & 2 & 9 - \lambda \end{pmatrix}$$

$$= (3 - \lambda) \left(\det \begin{pmatrix} 1 - \lambda & -6 \\ 2 & 9 - \lambda \end{pmatrix} - \det \begin{pmatrix} 5 & -6 \\ -5 & 9 - \lambda \end{pmatrix} \right)$$

$$= (3 - \lambda) \det \begin{pmatrix} -4 - \lambda & -6 \\ 7 & 9 - \lambda \end{pmatrix} = (3 - \lambda)(\lambda^2 - 5\lambda + 6) = (3 - \lambda)^2(2 - \lambda).$$

Notice that we added the second row to the first before performing cofactor expansion along the first row, and combined the resulting two 2×2 determinants into one via linearity in the last column. We have then $\lambda = 3$ with algebraic multiplicity 2 and $\lambda = 2$ once. Some row reductions later we arrive at

$$\ker(A - 2I) = \text{span} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad \ker(A - 3I) = \text{span} \begin{pmatrix} 2 \\ 5 \\ 6 \\ 0 \end{pmatrix}.$$

Since the eigenspace for $\lambda = 3$ has dimension 2, we can diagonalize C. We now do so:

$$C = \begin{pmatrix} 1 & 2 & 6 \\ -1 & 5 & 0 \\ 1 & 0 & 5 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 6 \\ -1 & 5 & 0 \\ 1 & 0 & 5 \end{pmatrix}.$$

□

Date: February 27, 2017.
3. (20 pts) [Ch. 4, Problem 2.6] Consider the matrix

$$A = \begin{pmatrix} 2 & 6 & -6 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{pmatrix}$$

a) Find its eigenvalues. Is it possible to find the eigenvalues without computing?

b) Is this matrix diagonalizable? Find out without computing anything.

c) If the matrix is diagonalizable, diagonalize it.

Solution.
a) Indeed it is possible to find the eigenvalues of A without computing anything. Note that A is an upper triangular matrix and, consequently, so is $A - \lambda I$ for indeterminate λ. Taking the determinant, we note that the determinant of an upper triangular matrix is the product of its diagonal elements. Thus, the characteristic polynomial of A is

$$p_A(\lambda) = \det(A - \lambda I) = - (\lambda - 2)(\lambda - 5)(\lambda - 4).$$

Consequently, the eigenvalues of A are 2, 4, and 5.

b) The matrix A is indeed diagonalizable. This is because it is a 3×3 matrix with 3 distinct eigenvalues and, by Corollary 2.3 in chapter 4, is thus diagonalizable.

c) After a bit of algebra, we find a set of eigenvectors corresponding to the set of A to be

$$v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \text{and } v_5 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

Noting that these form a basis, we may tabulate these vectors into an invertible matrix

$$Q = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

with inverse $Q^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}$.

Finally, taking our diagonal matrix consisting of eigenvalues

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix},$$

we see that

$$A = \begin{pmatrix} 2 & 6 & -6 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix} = QDQ^{-1}$$

\[\square \]

4. (20 pts) Let $T : \mathbb{P}_n \to \mathbb{P}_n$ be the linear operator given by $(Tf)(t) = f(-t)$. Find the eigenvalues and eigenvectors of T.

Solution. Note that the space \mathbb{P}_n of polynomials of degree less than or equal to n is of dimension $n+1$ and has as a basis the monomials $1, t, t^2, \ldots, t^n \in \mathbb{P}_n$. Furthermore, operating on each such monomial, one has that $Tt^k = (-t)^k = (-1)^k t^k$. Thus, each of the t^k is an eigenvector of T with eigenvalue $(-1)^k$. Thus, as $1, t, \ldots, t^n$ is a basis, it is an eigenbasis, and the only eigenvalues of T are therefore ± 1, or $\sigma(T) = \{1, -1\}$. Thus, T splits \mathbb{P}_n into two eigenspaces, the 1-eigenspace consisting of even polynomials (polynomials made up of linear combinations of only even degree
monomials), and the \((-1)\)-eigenspace consisting of odd polynomials (polynomials made up of linear combinations of only odd degree monomials).

5. (20 pts) A linear map \(T : V \to V \) is called nilpotent if \(T^n = 0 \) for some \(n \). Let \(V \) be a finite dimensional vector space over \(F \) and \(T : V \to V \) be a non-zero nilpotent operator.
 (1) Find all the possible eigenvalues of \(T \).
 (2) Show that \(I + T \) is invertible.
 (3) Is \(I + T \) diagonalizable?

Solution. (1) Suppose \(v \) is an eigenvector of \(T \), with eigenvalue \(\lambda \). Since \(T^n = 0 \), we have
\[
0 = T^n v = \lambda^n v.
\]
But \(v \) is nonzero, as it is an eigenvector. Thus \(\lambda^n = 0 \), so \(\lambda = 0 \); the only possible eigenvalue for \(T \) is 0.

(2) If \(v \) is an eigenvector of \(T + I \) with eigenvalue \(\lambda \), we see that
\[
Tv = ((T + I) - I)v = (\lambda - 1)v,
\]
and so \(v \) is an eigenvector of \(T \) with eigenvalue \(\lambda - 1 \). Therefore \(\lambda - 1 = 0 \), and \(\lambda = 1 \). We conclude that the only possible eigenvalue for \(T + I \) is 1; in particular 0 cannot be an eigenvalue of \(T + I \), and so it has full rank and is hence invertible.

(3) Let us assume \(T + I \) is diagonalizable. Its only eigenvalue is 1, which must then occur with algebraic and geometric multiplicity \(\dim V \). Thus the eigenspace corresponding to \(\lambda = 1 \) is all of \(V \). In other words, \((T + I)v = v \) for all \(v \in V \). We must then have \(T + I = I \), in which case \(T = 0 \). Thus we see that for a nonzero nilpotent \(T \), \(T + I \) is not diagonalizable.

6. (20 pts) Let \(V = \mathbb{P}^3 \) be the vector space of degree at most 3 polynomials in one variable \(x \) (with complex coefficients). Let \(T \) be the linear operator \(T(f) = xf' + f'' \).
 (You don’t need to check that \(T \) is linear.) (a) Calculate the eigenvalues of \(T \).
 (b) For each eigenvalue, find a basis of the corresponding eigenspace.
 (c) Give a basis of \(V \) for which \(T \) is represented by a diagonal matrix.

(Hint: Observe that what you have done amounts to finding the values of the parameter \(\lambda \) for which the differential equation \(\lambda f - xf' - f'' = 0 \) has a polynomial solution, and for such values finding the solutions.)

Solution. (a) We need to find \(\lambda \) such that \(T(f) = \lambda f \) for some non-trivial \(f \). As a result, we need to find \(\lambda \) such that \(\lambda f - xf' - f'' = 0 \). If we write \(f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \), then the equation \(\lambda f(x) - xf'(x) - f''(x) = 0 \) gives us
\[
(\lambda - 3)a_3 x^3 + (\lambda - 2)a_2 x^2 + (\lambda a_1 - a_1 - 6a_3)x + \lambda a_0 - 2a_2 = 0,
\]
so we get:
\[
\begin{align*}
(\lambda - 3)a_3 &= 0 \\
(\lambda - 2)a_2 &= 0 \\
(\lambda - 1)a_1 &= 6a_3 \\
\lambda a_0 &= 2a_2
\end{align*}
\]
To solve the above, we need to condition on whether the coefficients of \(f \) are zero, so we have the following cases:
• if $a_3 \neq 0$, then $\lambda = 3$, so $a_2 = 0$ and $a_1 = 3a_3$,
• if $a_3 = 0$, $a_2 \neq 0$, then $\lambda = 2$, so $a_1 = 0$ and $a_0 = a_2$,
• if $a_3 = 0$, $a_2 = 0$, $a_0 \neq 0$, then $\lambda = 0$, so $a_1 = 0$,
• if $a_3 = 0$, $a_2 = 0$, $a_0 = 0$, we must have $a_1 \neq 0$ as f is non-zero, so $\lambda = 1$.

As a result, we have 4 eigenvalues $\lambda \in \{0, 1, 2, 3\}$. (b) As seen in part (a), we already know the eigenvectors corresponding to the computed eigenvalues. Indeed, the following eigenvectors generate the eigenspace for each eigenvalue λ:

• for $\lambda = 3$, all vectors in the eigenspace look like $f(x) = 3a_3x + a_3x^3$, so $v_3 = 3x + x^3$ is a generating eigenvector,
• for $\lambda = 2$, all vectors in the eigenspace look like $f(x) = a_2 + a_2x^2$, so $v_2 = 1 + x^2$ is a generating eigenvector,
• for $\lambda = 0$, all vectors in the eigenspace look like $f(x) = a_0$, so $v_0 = 1$ is a generating eigenvector,
• for $\lambda = 1$, all vectors in the eigenspace look like $f(x) = a_1x$, so $v_1 = x$ is a generating eigenvector.

(c) Note that a basis of V for which the matrix of T would be diagonal must consist of eigenvectors of T. In this case, we know that eigenvectors for different eigenvalues are linearly independent, so the 4 eigenvectors v_3, v_2, v_0, v_1 above will be linearly independent and thus will form a basis for V. It’s easy to check that the matrix of T in this basis will be:

$$
\begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
$$

Also note that since we found 4 eigenvalues, each has to have algebraic multiplicity 1 and thus for each eigenvalue, its algebraic multiplicity is the same as the geometric multiplicity, which tells us that T is diagonalizable in the first place.

Remark that the first two parts could have been solved by using the matrix representation of T, finding the characteristic polynomial to figure out what the eigenvalues are and then solving to find a basis for the corresponding kernels. \(\square\)